Abstract
An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the ‘good’ groundwater potential zone covers 27.14% of the area, the ‘moderate’ zone 45.33%, and the ‘poor’ zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.
Résumé
L’approche présentée est destinée à évaluer les potentialités en eaux souterraines en utilisant la télédétection, les systèmes d’information géographique et les techniques d’analyse décisionnelle multi-critères. Cette approche partage les données hydrologiques et hydrogéologiques en deux groupes : exogènes (hydrologique) et endogènes (subsurface). Le cas étudié à Salboni Block, au Bengale Occidental (Inde), utilise six couches thématiques de paramètres exogènes et quatre de paramètres endogènes. A ces couches thématiques et à leurs entités ont été assignées des pondérations, qui ont été normalisées par des techniques de hiérarchisation analytique (AHP). Les couches ont ensuite été intégrées en utilisant le logiciel ArcGIS, pour générer deux cartes de potentialités en eaux souterraines. La carte basée sur les paramètres hydrologiques indique que le secteur présentant des potentialités ‘fortes’ couvre 27.14% de surface totale, les potentialités ‘moyennes’ 45.33%, et les potentialités ‘faibles’ 27.53%. La comparaison avec la carte basée sur les paramètres de subsurface met en évidence des concordances sur 59 % de la zone d’étude : dans une certaine mesure, la carte basée sur les paramètres hydrologiques est fiable. Plus de 80% de la zone d’étude présente des potentialités faibles à modérées, ce qui implique de mettre en place une gestion parcimonieuse des eaux souterraines, pour assurer leur pérennité. En règle générale, la technique intégrée est utile pour évaluer les ressources en eaux souterraines à l’échelle du bassin ou du sous-bassin.
Resumen
Se presenta un enfoque para la evaluación del potencial de las aguas subterráneas usando técnicas de sensoramiento remoto, sistema de información geográfica, geoeléctricas y análisis multicriterio de decisión. El enfoque divide los datos hidrológicos e hidrogeológicos disponibles en dos grupos, exógenos (hidrológicos) y endógenos (subsuperficiales). Un caso de estudio en Salboni Block, Bengala occidental (India), utiliza seis capas temáticas de parámetros exógenos y cuatro capas temáticas de parámetros endógenos. A estas capas temáticas y a sus características le fueron asignados pesos apropiados que fueron normalizados por procesos de jerarquía analítica y técnicas de autovectores. Las capas fueron luego integradas usando el software ArcGIS para generar dos mapas potenciales de aguas subterráneas. El mapa potencial de aguas subterráneas basado en los parámetros hidrológicos indicó que la zona de potencial ‘bueno’ de agua subterránea cubre 27.14% del área, la zona ‘moderada’ 45.33%, y la zona ‘pobre’ 27.53%. Una comparación de este mapa con el mapa de potencial de agua subterránea basado en parámetros subsuperficiales reveló que el mapa basado en parámetros hidrológicos define con precisión las zonas de potencial de agua subterránea en alrededor del 59% del área, y por lo tanto es confiable hasta un cierto punto. Más del 80% del área de estudio tiene un potencial de agua subterránea moderado a pobre, lo cual requiere un manejo eficiente de las aguas subterráneas para la seguridad a largo plazo del agua. En general, la técnica integrada es útil para la evaluación de los recursos de aguas subterráneas en una escala de cuenca o subcuenca.
摘要
本文利用遥感、地理信息系统、地电和多准则决策分析方法提出了一种地下水潜力评价的方法。该方法把已有的水文和水文地质数据分成两类, 即外部 (水文) 和内部 (地下) 。在西孟加拉 (印度) 的Salboni区利用六个外部参数专题图层和四个内部参数专题图层进行了一项研究。这些专题图层及其特征被赋予合适的权重, 该权重通过分析层次过程和特征向量方法进行正归化。然后通过Arcgis软件将这些图层整合, 形成两幅地下水潜力图。基于地下水潜力区图的水文参数表明, 较好的地下水潜力区占到整个区域的27.14%, 中等的区占到45.33%, 较差的则占27.53%。该图与基于地下参数的地下水潜力图的比较表明基于水文参数的图准确的勾画了该区59%的地下水潜力区, 且在很大程度上是可靠的。研究区80%以上的地区属于中等-较差地下水潜力区, 使长期有效的地下水安全管理变得十分必要。总之, 在盆地-次盆地尺度上, 综合方法对于地下水资源潜力评价是非常有用的。
Resumo
Apresenta-se uma abordagem para a avaliação do potencial das águas subterrâneas utilizando a detecção remota, um sistema de informação geográfica, métodos geoeléctricos e técnicas de análise de decisão multicritério. A abordagem divide os dados hidrológicos e hidrogeológicos disponíveis em dois grupos, exógenos (hidrológicos) e endógenos (subterrâneos). Um estudo de caso em Salboni Block, Bengala Ocidental (Índia), utiliza seis camadas temáticas de parâmetros exógenos e quatro camadas temáticas de parâmetros endógenos. A estas camadas temáticas e aos seus elementos foram atribuídos pesos adequados, que foram normalizados por processos de hierarquia analítica e baseados em vectores próprios. De seguida, as camadas foram integradas usando o software ArcGIS para gerar dois mapas de potencial das águas subterrâneas. O mapa de zonas de potencial baseadas em parâmetros hidrológicos indicou que a zona de ‘alto’ potencial das águas subterrâneas abrange 27.14% da área, a zona de potencial ‘moderado’ 45.33%, e a zona de potencial ‘baixo’ 27.53%. Uma comparação deste mapa com o mapa de potencial baseado em parâmetros subterrâneos revelou que o mapa assente em parâmetros hidrológicos delimita com precisão as zonas de potencial das águas subterrâneas em cerca de 59% da área, sendo confiável até certo ponto. Mais de 80% da área de estudo tem um potencial em relação às águas subterrâneas moderado a baixo, o que exige uma gestão eficiente dos recursos hídricos subterrâneos para garantir a sua sustentabilidade a longo prazo. De modo geral, a metodologia integrada é útil para a avaliação dos recursos hídricos subterrâneos à escala de bacia ou sub-bacia.















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186
Brown LR (2000) Falling water tables in China may soon raise food prices everywhere. Earth Policy Alerts, Earth Policy Institute, Washington DC. http://www.earth-policy.org/Alerts. Accessed on 20 October 2004
Chi K-H, Lee B-J (1994) Extracting potential groundwater area using remotely sensed data and GIS techniques. Proceedings of the Regional Seminar on Integrated Application of Remote Sensing and GIS for Land and Water Resource Management, Bangkok, pp 64–69
Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens 30(1):231–250
Edet AE, Okereke CS (1997) Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban massif, southeastern Nigeria. J Appl Geophys 36(4):195–204
Edet AE, Okereke CS, Teme SC, Esu EO (1998) Application of remote sensing data to groundwater exploration: a case study of the cross-river state, southeastern Nigeria. Hydrogeol J 6:394–404
Engman ET, Gurney RJ (1991) Remote sensing in hydrology. Chapman and Hall, London, 225 pp
Fetter CW (1994) Applied hydrogeology, 4th edn. Prentice Hall, Englewood Cliffs, NJ, pp 543–591
Foster S, Chilton J, Cardy F, Schiffler M, Moench M (2000) Groundwater in rural development: facing the challenges of supply and resource sustainability. World Bank Technical Paper No. 463, The World Bank, Washington DC
Garg NK, Hassan Q (2007) Alarming scarcity of water in India. Curr Sci 93:932–941
Goodchild MF (1993) The state of GIS for environmental problem-solving. In: Goodchild MF, Parks BO, Steyaert LT (eds) Environmental modeling with GIS. Oxford University Press, New York, pp 8–15
Hadithi MA, Shukla DC, Israil M (2003) Evaluation of groundwater resources potential in Ratmau-Pathri Rao watershed Haridwar district, Uttaranchal, India using geo-electrical, remote sensing and GIS techniques. Proceedings of the International Conference on Water and Environment (WE-2003), Bhopal, India, December 2003, pp 123–125
Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109
Hiscock KM, Rivett MO, Davison RM (eds) (2002) Sustainable groundwater development. Geological Society of London, Spec. Publ. 193
Israil M, Al-hadithi M, Singhal DC (2006) Application of resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeol J 14(5):753–759
Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int J Remote Sens 24(5):993–1008
Jha MK, Peiffer S (2006) Applications of remote sensing and GIS technologies in groundwater hydrology: past, present and future. BayCEER, Bayreuth, Germany, 201 pp
Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manage 21(2):427–467
Jha MK, Kumar S, Chowdhury A (2008) Vertical electrical sounding survey and resistivity inversion using genetic algorithm optimization technique. J Hydrol 359(1–2):71–87
Kamaraju MVV, Bhattacharya A, Reddy GS, Rao GC, Murthy GS, Rao TCM (1995) Groundwater potential evaluation of West Godavari District, Andhra Pradesh State, India: a GIS approach. Ground Water 34(2):318–325
Karanth KR, Seshubabu K (1978) Identification of major lineaments on satellite imagery and on aerial photographs for delineation for possible potential groundwater zones in Penukonda and Dharmavaram taluks of Anantapur ditrict. Proceedings of the Joint Indo-US Workshop on Remote Sensing of Water Resources, National Remote Sensing Agency (NRSA), Hyderabad, India, pp 188–197
Khan MA, Maharana PC (2002) Use of remote sensing and GIS in the delineation and characterization of groundwater prospect zones. Photonirvachak J Indian Soc Remote Sens 30(3):131–141
Khan S, Mohd A (1997) GIS approach for water resources assessment in parts of Rajasthan and Haryana using remote sensing techniques. Proceedings of the National Symposium on Remote Sensing for Natural Resources, 4–6 December 1996, Pune, India, pp 75–82
Krishnamurthy J, Srinivas G (1995) Role of geological and geomorphological factors in groundwater exploration: a study using IRS LISS data. Int J Remote Sens 16(4):2595–2618
Krishnamurthy J, Kumar NV, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and a geographic information system. Int J Remote Sens 17(10):1867–1884
Krishnamurthy J, Mani AN, Jayaram V, Manivel M (2000) Groundwater resources development in hard rock terrain: an approach using remote sensing and GIS techniques. Int J Appl Earth Observ Geoinformat 2(3/4):204–215
Kumar A (1999) Sustainable utilization of water resources in watershed perspective: a case study in Alaunja watershed, Hazaribagh, Bihar. Photonirvachak J Indian Soc Remote Sens 27(1):13–22
Kumar PKD, Gopinath G, Seralathan P (2007) Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest of India. Indian J Remote Sens 28(24):5583–5601
Madrucci V, Taioli F, de Araujo CC (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. J Hydrol 357:153–173
Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York
Meijerink AMJ (2007) Remote sensing applications to groundwater. IHP-VI, Series on Groundwater No. 16, UNESCO, Paris
Murthy KSR (2000) Groundwater potential in a semi-arid region of Andhra Pradesh: a GIS approach. Int J Remote Sens 21(9):1867–1884
Postel S (1993) Water and agriculture. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 56–66
Rao NS (2003) Groundwater prospecting and management in agro-based rural environment of crystalline terrain of India. Environ Geol 43:419–431
Rao YS, Jugran DK (2003) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol Sci J 48(5):821–833
Ravi Shankar MN, Mohan G (2006) Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Environ Geol 49:990–998
Ravindran KV (1997) Drainage morphometry analysis and its correlation with geology, geomorphology and groundwater prospects in Zuvari basin, south Goa: using remote sensing and GIS. Proceedings of the National Symposium on Remote Sensing for Natural Resources with Special Emphasis on Water Management, 4–6 December 1996, Pune, India, pp 270–296
Reddy PR, Vinod Kumar K, Sheshadri K (1996) Use of IRS-1C data for groundwater studies. Curr Sci 70(7):600–605
Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002
Roscoe Moss Co. (1990) Handbook of ground water development. Wiley, New York, pp 34–51
Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York
Sander P, Chesley MM, Minor TB (1996) Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: lessons learned. Hydrogeol J 4(3):40–49
Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841
Saraf AK, Jain SK (1993) Integrated use of remote sensing and GIS methods for groundwater exploration in parts of Lalitpur District, U.P. Proceedings of the International Conference on Hydrology and Water Resources, 20–22 December 1993, New Delhi, India, pp 251–259
Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834
Shah T, Molden D, Sakthivadivel R, Seckler D (2000) The global groundwater situation: overview of opportunities and challenges. IWMI, Colombo, Sri Lanka
Shahid S, Nath SK (2002) GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. J Spat Hydrol 2(1):1–10
Shahid S, Nath SK, Ray J (2000) Groundwater potential modeling in softrock using a GIS. Int J Remote Sens 21(9):1919–1924
Sikdar PK, Chakraborty S, Adhya E, Paul PK (2004) Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal: a GIS and remote sensing approach. J Spat Hydrol 4(2):1–24
Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information system (GIS) in the central highlands of Eritrea. Hydrogeol J 14(5):729–741
Sophocleous M (2005) Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol J 13(2):351–365
Sreedevi PD, Srinivasulu S, Raju KK (2001) Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environ Geol 40:1919–1924
Sreedevi PD, Subrahmanyam K, Ahmed S (2005) Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Kuddapah District, Andhra Pradesh, India. Hydrogeol J 13:534–545
Srivastava P, Bhattacharya A (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620
Stafford DB (ed) (1991) Civil engineering applications of remote sensing and geographic information systems. ASCE, New York
Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401
Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, pp 111–163
Zektser IS (2000) Groundwater and the environment: applications for the global community. Lewis, Boca Raton, FL
Acknowledgements
The authors are very grateful to the hydrogeologists of the State Water Investigation Directorate (SWID), Government of West Bengal, West Medinipur, India, for their help and technical discussions during the study period. Thanks are also due to the two anonymous reviewers, and the Editor, Associate Editor and Technical Editorial Advisor for their constructive suggestions, which significantly improved the earlier draft of this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jha, M.K., Chowdary, V.M. & Chowdhury, A. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18, 1713–1728 (2010). https://doi.org/10.1007/s10040-010-0631-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-010-0631-z