Skip to main content
Log in

The importance of unsaturated zone biogeochemical processes in determining groundwater composition, southeastern Australia

L’importance des processus biogéochimiques dans la zone non saturée pour déterminer la composition des eaux souterraines, Sud Est de l’Australie

La importancia de los procesos biogeoquímicos en la zona no saturada para determinar la composición del agua subterránea en el Sudeste de Australia

A importância dos processos biogeoquímicos da zona não saturada no estabelecimento da composição da água subterrânea, sudeste da Austrália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Analysis of soil, soil water and groundwater in the Mount William Creek catchment, southeastern Australia, shows that Mg2+ and Ca2+ within infiltrating rainfall are rapidly depleted by plant uptake and adsorption on clay minerals. Na+ and K+ may exhibit minor enrichment at shallow depths but are quickly readsorbed, so that cation/Cl ratios typical of groundwater are observed in soil water within the upper 200 cm of the soil profile for all species. The concentrations of K+ and Ca2+ in soil and groundwater are more depleted than Na+ and Mg2+ due to preferential uptake by vegetation. Removal of organic matter results in a continuing, long-term export of all major cations from the soil profiles. The processes of biogeochemical fractionation within the unsaturated zone rapidly modify the cation/Cl ratios of infiltrating rainfall to values characteristic of seawater. These mechanisms may have reached steady state, because groundwaters with seawater ion/Cl ratios are thousands of years old; the exchange sites on the soil clays are probably saturated, so cations supplied in rainfall are exported in organic matter and incorporated into recharge infiltrating into the groundwater. Much of the chemical evolution of groundwater traditionally attributed to processes within the aquifer is complete by the time recharge occurs; this evolutionary model may have broad application.

Résumé

L’analyse de sol, de l’eau contenue dans les sols ainsi que de l’eau souterraine du bassin versant d’un cours d’eau du Mont William dans le Sud-Est de l’Australie, montre que les ions Mg2+ et Ca2+ des eaux météoriques s’infiltrant sont rapidement consommés pour les besoins des plantes et par l’adsorption sur les minéraux argileux. Les ions Na+ et K+ peuvent montrer un faible enrichissement à de faible profondeur, mais sont rapidement réabsorbés, ainsi les rapports cation/Cl caractéristiques des eaux souterraines sont observés dans l’eau contenue dans le sol au niveau des 200 premiers centimètres des profils de sol pour toutes les espèces. Les concentrations des ions K+ et Ca2+ du sol et des eaux souterraines sont davantage consommés que les ions Na+ et Mg2+, à cause de la consommation préférentielle par la végétation. La dissipation de la matière organique a pour conséquence un export continu sur du long terme de tous les cations majeurs des profils de sol. Les processus du fractionnement biogéochimique au sein de la zone non saturée modifient rapidement les rapports cation/Cl caractéristiques d’une eau météorique d’infiltration vers des valeurs caractéristiques d’eau de mer. Ces mécanismes peuvent atteindre un état permanent, les eaux souterraines avec des rapports ion/Cl caractéristiques d’une eau de mer ont des âges de plusieurs milliers d’années; les sites d’échanges au niveau des sols argileux sont probablement saturés, de ce fait, les cations fournis par les pluies sont exportés dans la matière organique et incorporés aux eaux de recharge des eaux souterraines. La plupart de l’évolution chimique des eaux souterraines traditionnellement attribuée aux processus prenant place au sein de l’aquifère est ainsi achevée au moment où la recharge de l’aquifère devient effective; ce modèle d’évolution peut répondre à de nombreuses questions hydrogéologiques.

Resumen

Los análisis de suelo, agua del suelo y agua subterránea en la cuenca de drenaje del Mount William Creek en el sudeste de Australia, muestran que el Mg2+ y Ca2+ de las lluvias que se infiltran son rápidamente agotados por la absorción de las plantas y la adsorción en minerales de las arcillas. Na+ y K+ pueden exhibir un menor enriquecimiento a profundidades someras pero son rápidamente readsorbidos, de manera que se observa el cociente catión/Cl típico de las aguas subterráneas en el agua del suelo dentro de los 200 cm superiores del perfil de suelo para todas las especies. La concentración de K+ y Ca2+ en el suelo y agua subterránea se agotan en una mayor proporción que el Na+ y Mg2+ debido a la absorción preferencial por la vegetación. La remoción de materia orgánica resulta en una salida continua y a largo plazo de todos los cationes mayoritarios desde los perfiles de suelo. Los procesos de fraccionamiento biogeoquímico dentro de la zona no saturada modifican rápidamente el cociente catión/Cl de la lluvia que se infiltra a valores característicos del agua de mar. Estos mecanismos pueden haber alcanzado el estado estacionario, porque las aguas subterráneas con cocientes ión/Cl típicos del agua de mar presentan miles de años de antigüedad; los sitios de intercambio en las arcillas de los suelos están probablemente saturados, de manera que los cationes provistos en la lluvia son transferidos a materia orgánica e incorporados en la recarga por infiltración en las aguas subterráneas. Gran parte de la evolución química de las aguas subterráneas tradicionalmente atribuidas a procesos dentro del acuífero es completado en el tiempo que ocurre la recarga; este modelo evolutivo puede tener una amplia aplicación.

Resumo

As análises do solo, da água do solo e da água subterrânea da bacia hidrográfica de Mount William Creek, sudeste da Austrália, mostram que o Mg2+ e o Ca2+ da água de precipitação infiltrada são rapidamente esgotados por remoção pelas plantas e por adsorção em minerais das argilas. O Na+ e o K+ podem exibir um ligeiro enriquecimento a pequenas profundidades mas são rapidamente readsorvidos, de tal forma que, para todas as espécies e nos 200 cm superiores do perfil de solo, se podem observar os rácios catião/Cl típicos da água subterrânea. As concentrações de K+ e de Ca2+ na água do solo e na água subterrânea estão mais diminuídos que as de Na+ e de Mg2+, devido à remoção preferencial pela vegetação. A remoção da matéria orgânica resulta numa exportação contínua e a longo prazo de todos os catiões maiores a partir dos perfis do solo. Os processos de fraccionamento biogeoquímico no seio da zona não saturada rapidamente modificam os rácios catião/Cl da água de precipitação infiltrada para valores característicos da água do mar. Estes mecanismos podem ter atingido um regime estacionário, porque as águas subterrâneas com rácios ião/Cl da água do mar têm milhares de anos e os locais de troca nas argilas do solo estão provavelmente saturados, pelo que os catiões fornecidos pela água da chuva são exportados na matéria orgânica e incorporados na recarga que se infiltra para a água subterrânea. Muita da evolução química da água subterrânea tradicionalmente atribuída a processos operados no seio do aquífero está completa ao tempo em que ocorre a recarga; este modelo evolutivo poderá ter amplas aplicações.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acworth I, Jankowski J (2001) Salt source for dryland salinity: evidence from an upland catchment on the Southern Tablelands of New South Wales. Aust J Soil Res 39:39–59

    Article  Google Scholar 

  • Arad A, Evans R (1987) The hydrogeology, hydrogeochemistry and environmental isotopes of the Campaspe River aquifer system, north-central Victoria, Australia. J Hydrol 95:63–86

    Article  Google Scholar 

  • Artaxo P, Orsini C (1987) Pixe and receptor models applied to remote aerosol source apportionment in Brazil. Nucl Instrum Methods Phys Res B22:259–263

    Google Scholar 

  • Benedetti MF, Dia A, Riotte J, Chabaux F, Gerard M, Boulegue J, Fritz B, Chauvel C, Bulourde M, Deruelle B, Ildefonse P (2003) Chemical weathering of basaltic lava flows undergoing extreme climatic conditions: the water geochemistry record. Chem Geol 201:1–17

    Article  Google Scholar 

  • Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323:178–192

    Article  Google Scholar 

  • Bennetts DA, Webb JA, McCaskill M, Zollinger R (2007) Dryland salinity processes within the discharge zone of a local groundwater system, Southeastern Australia. Hydrogeol J 15:1197–1210

    Article  Google Scholar 

  • Blackburn G, McLeod S (1983) Salinity in atmospheric precipitation in the Murray-Darling drainage basin, Australia. Aust J Soil Res 21:411–434

    Article  Google Scholar 

  • Blake R (1989) The origin of high sodium bicarbonate waters in the Otway Basin, Victoria, Australia. In: Miles (ed) Water-rock interaction. Balkema, Rotterdam, The Netherlands

  • Bormann ME (2004) Temporal and spatial trends in rainwater chemistry across central and western Victoria. Honours Thesis, La Trobe University, Melbourne, Australia, 86 pp

  • Bureau of Meteorology (2003) Climate data for stations 079105 and 079034. Climate and Consultancy Section, Victorian Regional Office, Bureau of Meteorology, Melbourne

  • Cardenal J, Benavente J, Cruz-Sanjulian JJ (1994) Chemical evolution of groundwater in Triassic gypsum-bearing carbonate aquifers (Las Alpujarras, southern Spain). J Hydrol 161:3–30

    Article  Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19(8):1233–1254

    Article  Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks D (2007) Soil biogeochemical processes within the Critical Zone. Elements 3:321–326

    Article  Google Scholar 

  • Cayley RA, Taylor DH (2001) Ararat: 1:100,000 map area geological report. Geological Survey of Victoria Report 115, Geological Survey of Victoria, Melbourne, 324 pp

  • de Mello WZ (2001) Precipitation chemistry in the coast of the metropolitan region of Rio de Janeiro, Brazil. Environ Pollut 114:235–242

    Article  Google Scholar 

  • Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67

    Article  Google Scholar 

  • Drever JI, Smith CL (1978) Cyclic wetting and drying of the soil zone as an influence on the chemistry of groundwater in arid terrains. Am J Sci 278:1448–1454

    Google Scholar 

  • Dyson PR (1983) Dryland salting and groundwater discharge in the Victorian Uplands. Proc R Soc Vic 95(3):113–116

    Google Scholar 

  • Dyson PR, Jenkin JJ (1981) Hydrological characteristics of soils relevant to dryland salting in central Victora. Soil Conservation Authority of Victoria, Melbourne

  • Edwards MD (2006) A hydrological, hydrogeological and hydrogeochemical study of processes leading to land and water salinisation in the Mount William Creek Catchment, southeastern Australia. PhD Thesis, LaTrobe University, Melbourne, 263 pp

  • Edwards MD, Webb JA (2006) The effects of lithology, soil and vegetation on recharge estimates in an upland catchment affected by dryland salinity: Mt William Creek, western Victoria. 10th Murray Darling Basin Groundwater Workshop, Canberra, September 2006

  • Elliot T, Andrews JN, Edmunds WM (1999) Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire Basins, UK. Appl Geochem 14:333–363

    Article  Google Scholar 

  • Fink D, Hotchkis M, Hua Q, Jacobsen G, Smith AM, Zoppi U, Child D, Mifsud C, van der Gaast H, Williams A, Williams M (2004) The ANTARES AMS facility at ANSTO. NIM B

  • Fryar AE, Mullican WF, Macko SA (2001) Groundwater recharge and chemical evolution in the southern high plains of Texas, USA. Hydrogeol J 9:522–542

    Article  Google Scholar 

  • Garcia-Pichel F, Johnston SL, Youngkin D, Belnap J (2003) Small scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Gould RF (ed) Equilibrium concepts in natural water systems. American Chemical Society, Washington, DC, pp 222–242

    Google Scholar 

  • Guler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285:177–198

    Article  Google Scholar 

  • Harrison A (1993) Hydrogeological assessment of salinity processes: Mount William Creek Catchment. Report 1993/21, Royal Water Commission, Melbourne

  • Heathcote JA (1985) Carbonate chemistry of recent chalk groundwater in a part of East Anglia, UK. J Hydrol 78:215–227

    Article  Google Scholar 

  • Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52:41–52

    Article  Google Scholar 

  • Hopmans P, Flinn DW, Farrell PW (1987) Nutrient dynamics of forested catchments in southeastern Australia and changes in water quality and nutrient exports following clearing. For Ecol Manage 20:209–231

    Article  Google Scholar 

  • Hudson RO, Golding DL (1997) Controls on groundwater chemistry in subalpine catchments in the southern interior of British Columbia. J Hydrol 201:1–20

    Article  Google Scholar 

  • Hutton JT, Leslie TI (1958) Accession of non-nitrogenous ions dissolved in rainwater to soils in Victoria. Aust J Agric Res 9:59–84

    Article  Google Scholar 

  • Jankowski J, Acworth I (1993) The hydrogeochemistry of groundwater in fractured bedrock aquifers beneath dryland salinity occurrences at Yass, NSW. AGSO J Aust Geol Geophys 14:279–285

    Google Scholar 

  • Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    Article  Google Scholar 

  • Kimblin RT (1995) The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England and some UK comparisons. J Hydrol 172:293–311

    Article  Google Scholar 

  • Lawrence CR (1975) Geology, hydrodynamics and hydrochemistry of the southern Murray Basin. Memoirs 30, Geological Survey of Victoria, Melbourne

  • Love AJ, Herczeg AL, Leaney FW, Stadter MF, Dighton JC, Armstrong D (1994) Groundwater residence time and palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C data. J Hydrol 153:157–187

    Article  Google Scholar 

  • Ma C, Eggleton RA (1999) Cation exchange capacity of kaolinite. Clay Clay Miner 47(2):174–180

    Google Scholar 

  • Macumber PG (1991) Interaction between groundwater and surface systems in northern Victoria. Department of Conservation and Environment, Melbourne

    Google Scholar 

  • Moss PD, Edmunds WM (1992) Processes controlling acid attenuation in the unsaturated zone of a Triassic sandstone aquifer (U.K.), in the absence of carbonate minerals. Appl Geochem 7:573–583

    Article  Google Scholar 

  • Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s Guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99–4259, 310 pp

  • Rademacher LK, Clarke JF, Bryant Hudson G, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin: Nevada County, California. Chem Geol 179:37–51

    Article  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata, Melbourne

    Google Scholar 

  • Rosen M, Jones S (1998) Controls on the chemical composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, Central Otago, New Zealand. Hydrogeol J 6:264–281

    Article  Google Scholar 

  • Salama RB, Wells ASM, Farrington P, Bartle GA (1993) The chemical evolution of groundwater in the aquifer systems of the Yilgarn Craton of Western Australia, CSIRO Division of Water Resources, Perth

  • Simpson JH, Herczeg AL (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia. J Hydrol 154:323–350

    Article  Google Scholar 

  • Sparks DL (2005) Metal and oxyanion sorption on naturally occurring oxide and clay mineral surfaces. In: Grassian VH (ed) Environmental catalysis, Taylor and Francis, London, pp 3–36

  • Spears DA, Reeves MJ (1975) The influence of superficial deposits on groundwater quality in the Vale of York. Q J Eng Geol 8:255–269

    Article  Google Scholar 

  • Stewart HTL, Flinn DW (1985) Nutrient losses from broadcast burning of Eucalyptus debris in north-east Victoria. Aust For Res 15:321–332

    Google Scholar 

  • Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15–27

    Article  Google Scholar 

  • Sutcliffe JF (1962) Mineral salts absorption in plants. Pergamon, London, 194 pp

    Google Scholar 

  • Taylor JC, Hinczak I (2001) Rietveld made easy: a practical guide to the understanding of the method and successful phase quantifications. Sietronics, Canberra, Australia

    Google Scholar 

  • Tickell SJ, Humphrys WG (1987) Groundwater resources and associated salinity problems of the Victorian part of the Riverine Plain. Department of Industry, Technology and Resources

    Google Scholar 

  • Toth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • White AF, Blum AE, Schulz MS, Huntington TG, Peters NE, Stonestrom DA (2002) Chemical weathering of the Panola granite: solute and regolith elemental fluxes and the weathering rate of biotite. In: Hellmann R, Wood SA (eds) Water-rock interactions, ore deposits and environmental geochemistry: a tribute to David A Crerar. Geol Soc Spec Publ 7:37–60

  • White AF, Schulz MS, Vivit DV, Blum AE, Stonestrom DA (2006) Controls on soil pore water solutes: an approach for distinguishing between biogenic and lithogenic processes. J Geochem Explor 88:363–366

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Wimmera Catchment Management Authority and an Australian postgraduate award from the Australian Government Department of Education, Science and Training. Groundwater dating was supported by AINSE Grant 05/172. The authors also acknowledge the contribution of three anonymous reviewers whose comments substantially improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, M., Webb, J. The importance of unsaturated zone biogeochemical processes in determining groundwater composition, southeastern Australia. Hydrogeol J 17, 1359–1374 (2009). https://doi.org/10.1007/s10040-009-0449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0449-8

Keywords

Navigation