Skip to main content

Advertisement

Log in

Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The amount and timing of aquifer recharge and the evolution of lakes and groundwater in the south-eastern Badain Jaran desert of Inner Mongolia, with high megadunes, has been investigated using stable isotopes and hydrochemistry. Unsaturated zone moisture profiles down to 22 m have recorded recharge over 1185 years. Small but finite amounts of recharge are recorded with mean recharge rates of 0.95-1.33 mm year−1, determined using a chloride mass balance technique. The unsaturated profile also acts as a unique archive of hydrological and climate change. Before 1300, it was relatively dry but distinct wet periods may be recognised during 1340-1450, 1500-1610 and 1710-1820. Since the mid 1800s, the climate shows a trend towards greater aridity. The interdune lakes are generally fresh but locally, hypersaline lakes are found in juxtaposition. This implies that in general, the lakes have low residence times and flow back into the dune system, but sedimentary obstruction locally prevents outflow and extreme evaporation occurs. The stable isotope records show that the lakes are fed by palaeowaters which on the basis of other proxy data must predate the Last Glacial Maximum. Their recharge source is problematic but most likely this derives from a diminishing water table extending some 30 m south to the Yabulai Mountains.

Résumé

Le taux et la fréquence de la recharge aquifère ainsi que l’évolution des lacs et de l'eau souterraine du Sud Est du désert de “Badain Jaran” (Mongolie intérieure), avec ses hautes méga-dunes, ont été étudiés à l’aide d’isotopes stables et de l’hydrochimie. Les profils d’humidité de la zone non saturée effectués jusqu'à 22 mètres de profondeur enregistrent des recharges jusqu’à 1185 ans. Des recharges faibles mais claires sont enregistrées, elles montrent une moyenne de 0.95 – 1.33 mm/an à l’aide de la méthode du bilan des chlorures. La zone non saturée fournit aussi une archive unique des changements hydrogéologiques et climatiques. Avant 1300 ans après JC, la région était relativement sèche, pourtant, des périodes humides peuvent être reconnues entre 1340–1450, 1500–1610, et 1710–1820 ans après JC. Depuis le milieu du 18éme, le climat montre une tendance à une plus grande aridité. Les lacs inter duniaires contiennent générallement de l’eau douce mais localement, des lacs hypersalins sont trouvés en juxtaposition. Ceci implique que l’eau des lacs ont un faible temps de résidence, et qu’elles retournent au système dunaire; locallement, des colmatages sédimentaires limitent cet écoulement et une évaporation importante apparaît. Les enregistrements des isotopes stables montrent que les lacs sont alimentés par des eaux anciennes qui sur la base d’autre données antidatent le maximum de la dernière période glacière. Cette source de recharge est problématique, ce qui découle certainement de la diminution du niveau phréatique qui atteint 30 mètres au sud des montagnes de “Yabulai”.

Resumen

Se ha investigado la cantidad y edad de recarga del acuífero y la evolución de los lagos y agua subterránea en el sureste del desierto Badain Jaran del Interior de Mongolia, con megadunas altas, utilizando hidroquímica e isótopos estables.Se han analizado perfiles de zona de humedad no saturada de hasta 22m de profundidad los cuales registran recarga por más de 1,185 años. Se ha determinado en base a técnicas de balance de masa de cloruro la presencia de cantidades pequeñas pero finitas de recarga con un ritmo medio de recarga de 0.95-1.33 mm año−1. El perfil no saturado también actúa como un archivo único de cambio climático e hidrológico. La región fue relativamente seca 1300 A.C. pero pueden identificarse diferentes periodos húmedos durante 1340–1450, 1500–1610 y 1710–1820 A.C. Desde mediados de la década de 1800 el clima muestra una tendencia hacia mayor aridez. Los lagos interdúnicos son generalmente de agua fresca pero se ha encontrado en yuxtaposición lagos hipersalinos. Esto implica que en general los lagos tiene bajo tiempo de residencia y fluyen de regreso hacia el sistema de dunas, aunque obstrucción sedimentaria local previene el flujo y ocurre evaporación extrema. Los registros de isótopos estables muestran que los lagos son alimentados por paleoaguas las cuales en base a datos proxy tuvieron que haberse formado antes de la Última Glaciación Máxima. Su fuente de recarga es problemática pero muy probablemente esto se deriva de un nivel freático descendente que se extiende unos 30m al sur de las montañas Yabulai. Evolution de l’eau souterraine et de lacs dans l’écosystème du désert de “Badain Jaran”, Mongolie interieure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge of an unconfined aquifer. Aust J Soil Rese 16:181–195

    Article  Google Scholar 

  • An Z, Kukla GL, Porter SC, Xiao J (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat Res 36:29–36

    Article  Google Scholar 

  • Cai H (1986) The tentative probe of stratigraphical division of Quaternary in Baddain Jaran Desert. Gansu Geol 3:142–153

    Google Scholar 

  • Chen J, Li L, WJ Barry DA, Sheng X, Gu W, Zhao X, Chen L (2004) Major desert groundwater resource maintains the world’s highest stationary sand dunes. Nature 432:459

    Article  Google Scholar 

  • Clark I, Fritz P (1998) Environmental isotope hydrogeology. Lewis Clark, Boca Raton

    Google Scholar 

  • Cook PG, Edmunds WM, Gaye CB (1992) Estimating paleorecharge and paleoclimate from unsaturated zone profiles. Water Resour Res 28:2721–2731

    Article  Google Scholar 

  • Darling WG, Talbot JC (1989) Extraction method for the isotopic analysis of porewaters. Rep. WD/89/66. British Geological Survey, Wallingford, England

    Google Scholar 

  • Dong G, Gao Q, Zou X (1995) The climatic change during the last Pleistocene in the Badain Jaran Desert. Chin Sci Bull 40(13):1214–1218

    Google Scholar 

  • Edmunds WM, Ma JZ (2005) Groundwater availability and renewal in Inner Mongolia, China: The Minqin Basin and the Badain Jaran Desert. In: Cheng G, Lei Z, Wang Z (eds) Proceedings of the International Symposium on Sustainable Water Resources management and Oasis–Hydrosphere–Desert interaction in Arid Regions, 27–29 October 2005, China Tsinghua University Press, Beijing

  • Edmunds WM, Tyler SW (2002) Unsaturated zones as archives of past climates: toward a new proxy for continental regions. Hydrogeol J 10:216–228

    Article  Google Scholar 

  • Edmunds WM, Darling WG, Kinniburgh DG (1988) Solute profile techniques for recharge estimation in semi-arid and arid terrain. In: Estimation of natural groundwater recharge. NATO ASI Series. Reidel, Dordrecht, pp 139–158

    Google Scholar 

  • Geyh MA, Gu W, Jäkel D (1996) Groundwater recharge study in the Gobi Desert, China. Geowissenschaften 7–8:279–280

    Google Scholar 

  • Goni IB, Fellman E, Edmunds WM (2001) Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos Environ 35:4331–4339

    Article  Google Scholar 

  • Goutorbe JP, Dolman AJ, Gash JHC, Kerr YH, Lebel T, Prince SD, Stricker JNM (eds) (1997) HAPEX-Sahel. Elsevier, Amsterdam

    Google Scholar 

  • Hoevermann J, Hoevermann E, Lehmkuhl F (1998) Geomorphologische Untersuchungen im noerdlichen Vorland des Qilian Shan, China (Geomorphological investigations in the northern foreland of the Qilian Shan, China). Berliner Geographische Abhandlungen 63:83–98

  • Hofmann J (1996) The lakes in the SE part of Badain Jaran Shamo, their limnology and geochemistry. Geowissenschaften 7/8:275–278

    Google Scholar 

  • Hofmann J (1999) Geoökologische Untersuchungen der Gewässer im Südosten der Badain Jaran Wüste (Geo-ecological investigations of the waters in the south-eastern Badain Jaran Desert). Berliner Geographische Abhandlungen 64

  • Jäkel D (1996) The Badain Jaran Desert: its origin and development. Geowissenschaften 7–8:272–274

    Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid northwest China: a case study of the Shiyang River Basin. J Arid Environ 61:277–295

    Google Scholar 

  • Norin E, Hedin S (1980) Central Asia atlas, memoir on maps, vol III. Statens Etnografiska Museet, Stockholm, pp 94–110

    Google Scholar 

  • Pachur HJ, Wünnemann B, Zhang HC (1995) Lake evolution in the Tengger Desert, Northwestern China, during the last 40,000 years. Quat Res 44:171–180

    Article  Google Scholar 

  • Shi Y, Zhang X (1995) The influence of climate changes on the water resources in the arid areas of northwest China. Sci China Ser B 25:968–977

    Google Scholar 

  • Shi Y, Yao T, Yang B (1999) 10 a scale climatic change during the last 2000 a recorded in Guliya ice core and compared to east China references records. Sci China Ser D 29:79–86

    Google Scholar 

  • Stone WJ (1992) Paleohydrologic implications of some deep soil water chloride profiles, Murray Basin, South Australia. J Hydrol 132:201–223

    Article  Google Scholar 

  • Sun P, Sun D (1964) Study on the hydrogeology of western Inner Mongolia. Desert Control Res 6:245–317

    Google Scholar 

  • Tyler SW, Chapman JB, Conrad SH, Hammermeister DP, Blout DO, Miller JJ, Sully MJ, Ginnani JM (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour Res 32:1481–1499

    Article  Google Scholar 

  • Wellings SR, Bell JP (1982) Physical controls of water movement in the unsaturated zone. Q J Eng Geol 15:235–241

    Google Scholar 

  • Wünnemann B, Pachur HJ, Zhang HC (1998) Climatic and environmental changes in the deserts of Inner Mongolia China since the Late Pleistocene. In: Alsharhan AL, Glennie KW, Whittle GL, Kendall CGStC (eds) Quaternary deserts and climates changes. Balkema, Rotterdam, pp 381–394

    Google Scholar 

  • Yang X (2000) Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30,000 years. Chin Sci Bull 45(11):1042–1047

    Article  Google Scholar 

  • Yang X (2002) Water chemistry of the lakes in the Badain Jaran Desert and their Holocene evolutions. Quat Sci 22(2):97–104

    Google Scholar 

  • Yao T, Qing D, Tian L (1996) Temperature and precipitation fluctuations in Tibetan Plateau during the last 2,000 years: record in Guliya ice core. Sci China Ser D 26(4):348–353

    Google Scholar 

  • Yu S, Li B, Cai W (1962) Research on Badain Jaran Desert and Gobi in the western Inner Mongolia. Desert Control Res 3:96–107

    Google Scholar 

  • Zhang P (1996) The climatic change in China. Shandong Scientific and Technical Press, Jinan, pp 231–436

    Google Scholar 

  • Zhang J, Lin Z (1992) Climate of China. Wiley, New York

    Google Scholar 

  • Zhang HC, Ma Y, Wunnemann (2000) A Holocene climatic record from arid northwestern China. Palaeogeogr Palaeoclimatol Palaeoecol 162:389–401

    Article  Google Scholar 

  • Zhu Z (1999) Desert and desertification rehabilitation in China. Chinese Environmental Science Press, Beijing, pp 137–142

    Google Scholar 

Download references

Acknowledgements

The research is supported by the National Science Foundation of China (No. 40302031) and NSFC Innovation Team Project (No. 40421101). This work also forms part of a wider UK-China collaboration and we acknowledge the support of the Royal Society through its link scheme (PEK/0992/306). We thank George Darling and Janice Trafford of the British Geological Survey for chemical and isotopic analyses and helpful advice. Sincere thanks are extended to Prof. Fahu Chen and Ric Battarbee for collaboration and co-organizing the fieldwork. We also appreciate the contributions of two anonymous reviewers and the editorial staff of HJ, especially Sue Duncan, all of whom contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhu Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Edmunds, W.M. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeol J 14, 1231–1243 (2006). https://doi.org/10.1007/s10040-006-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0045-0

Keywords

Navigation