Skip to main content

Advertisement

Log in

Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Despite remarkable new developments in stochastic hydrology and adaptations of advanced methods from operations research, stochastic control, and artificial intelligence, solutions of complex real-world problems in hydrogeology have been quite limited. The main reason is the ultimate reliance on first-principle models that lead to complex, distributed-parameter partial differential equations (PDE) on a given scale. While the addition of uncertainty, and hence, stochasticity or randomness has increased insight and highlighted important relationships between uncertainty, reliability, risk, and their effect on the cost function, it has also (a) introduced additional complexity that results in prohibitive computer power even for just a single uncertain/random parameter; and (b) led to the recognition in our inability to assess the full uncertainty even when including all uncertain parameters. A paradigm shift is introduced: an adaptation of new methods of intelligent control that will relax the dependency on rigid, computer-intensive, stochastic PDE, and will shift the emphasis to a goal-oriented, flexible, adaptive, multiresolutional decision support system (MRDS) with strong unsupervised learning (oriented towards anticipation rather than prediction) and highly efficient optimization capability, which could provide the needed solutions of real-world aquifer management problems. The article highlights the links between past developments and future optimization/planning/control of hydrogeologic systems.

Résumé

Malgré de remarquables nouveaux développements en hydrologie stochastique ainsi que de remarquables adaptations de méthodes avancées pour les opérations de recherche, le contrôle stochastique, et l’intelligence artificielle, solutions pour les problèmes complexes en hydrogéologie sont restées assez limitées. La principale raison est l’ultime confiance en les modèles qui conduisent à des équations partielles complexes aux paramètres distribués (PDE) à une échelle donnée. Alors que l’accumulation d’incertitudes et, par conséquent, la stockasticité ou l’aléat a augmenté la perspicacité et a mis en lumière d’importantes relations entre l’incertitude, la fiabilité, le risque, et leur effet sur les coûts de fonctionnement, il a également (a) introduit une complexité additionnelle qui résulte dans un pouvoir prohibitif des moyens de calcul informatique même pour une simple estimation de l’incertitude; et (b) a conduit a une reconnaissance de notre manque d’aptitude à maîtriser l’incertitude totale même en introduisant tous les paramètres connus de l’incertitude. La représentation du changement est introduit: une adaptation de nouvelles méthodes de contrôle intelligent qui va relâcher la dépendance à la rigidité des algorithmes, aux calculs informatiques intensifs, à la PDE stockastique, et qui modifiera l’emphase entre les MRDS—systèmes interactifs d’aide à la décision de multiresolutionelle (flexibles, adaptables et orientables selon les objectifs)—avec un fort apprentissage non (orienté vers l’anticipation plutôt que la prédiction), et une capacité d’optimisation efficiente très élevée, qui pourrait apporter le besoin de solutions pour la modélisation des problèmes de management des aquifères réalistes. Cet article met en lumière les liens entre les développements passés et les futurs moyens d’optimisation, de gestion et de contrôle des systèmes hydrogéologiques.

Resumen

A pesar de nuevos avances notables en hidrología estocástica y las adaptaciones de métodos avanzados de investigación de operaciones, control estocástico, e inteligencia artificial, las soluciones de problemas complejos del mundo real en hidrogeología han sido bastante limitadas. La principal razón es la dependencia definitiva en modelos de primer-principio que conducen a ecuaciones parciales diferencias de parámetro distribuido complejas (PDE) a una escala dada. Mientras que la adición de incertidumbre, y por lo tanto, estocasticidad o aleatoriedad ha incrementado la profundidad y resaltado relaciones importantes entre la incertidumbre, confiabilidad, riesgo, y su efecto en la función de costo, la adición también ha permitido (a) introducir complejidad adicional que resulta en potencia computacional excesiva aún para un solo parámetro incierto/aleatorio; y (b) llevar a reconocer nuestra discapacidad para evaluar la incertidumbre completa aún cuando se incluyen todos los parámetros inciertos. Se introduce un cambio paradigmático: una adaptación de nuevos métodos de control de inteligencia que relajará la dependencia en PDE estocásticas, rígidas y de uso computacional intensivo, cambiando el énfasis hacia un sistema de apoyo de decisiones de propósitos múltiples (MRDS) adaptivo, flexible, y orientado a objetivos con fuerte aprendizaje sin supervisión (orientado a la anticipación más que a la predicción) con fuerte capacidad de optimización eficiente, lo cual podría aportar las soluciones necesarias a los problemas de manejo reales con los acuíferos. El artículo resalta los vínculos entre desarrollos pasados y control/planificación/optimización futura de sistemas hidrogeológicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. First-order Taylor series expansion of perturbations about the mean (parameters and state variables).

  2. Optimization cannot exist without a representation, which is a model/simulator based on characterization.

References

  • Aanonsen SI, Eide AL, Holden L, Aasen JO (1995) Optimizing reservoir performance under uncertainty with application to well location. Paper SPE 30710 presented at the SPE Annual Technical Conference & Exhibition, Dallas, TX, October, pp 22–25

  • Ahlfeld D, Mulvey J, Pinder G, Wood E (1988a) Contaminated groundwater remediation design using simulation, optimization and sensitivity theory, 1. Model development. Water Resour Res 24:431–442

    Google Scholar 

  • Ahlfeld D, Mulvey J, Pinder G, Wood E (1988b) Contaminated groundwater remediation design using simulation, optimization and sensitivity theory, 2. Analysis of a field site. Water Resour Res 24:443–452

    Google Scholar 

  • Albus J, Meystel A, Uzzaman S (1993) Nested motion planning for an autonomous robot. In: Proceedings of IEEE Conference on Aerospace Systems, May 25–27, Westlake Village, CA

  • Albus J, Meystel A (2001) Engineering of mind: an introduction of the science of intelligent systems. Wiley, New York

    Google Scholar 

  • Alley W (1986) Regression approximations for transport model constraint sets in combined simulation-optimization studies. Water Resour Res 22(4):581–586

    Google Scholar 

  • Andricevic R, Kitanidis PK (1990) Optimization of the pumping schedule in aquifer remediation under uncertainty. Water Resour Res 26(5):875–885

    Google Scholar 

  • Andricevic R (1993) Coupled withdrawal and sampling designs for groundwater supply models. Water Resour Res 29(1):5–16

    Google Scholar 

  • Arfken G (1985) Mathematical methods for physicists, 3rd edn. Academic, New York

    Google Scholar 

  • Bar-Shalom Y (1981) Stochastic dynamic programming: caution and probing. IEEE Trans Autom Control 26(5):1184–1195

    Google Scholar 

  • Bhattacharya B, Lobbrecht AH, Solomatine DP (2003) Neural networks and reinforcement learning in control of water systems. ASCE J Water Resour Plan Manage 6(1):129

    Google Scholar 

  • Ben-Zvi M, Berkowitz B, Kesler S (1988) Pre-posterior analysis as a tool for data evaluation: application to aquifer contamination. Water Resour Manage 2:11–20

    Google Scholar 

  • Beran MJ (1968) Statistical continuum theories. Interscience, New York

    Google Scholar 

  • Bittencourt AC, Horne RN (1997) Reservoir development and design optimization. paper SPE 38895 presented at the 1997 SPE Annual Technical Conference & Exhibition, San Antonio, TX, October, pp 5–8

  • Boger Z (2002) Who is afraid of the BIG bad ANN? In: International Joint Conference on Neural Networks, IJCNN’02, Honolulu, HI, May 2002

  • Boger Z, Guterman H (1997) Knowledge extraction from artificial neural networks models. In: Proceedings of the IEEE International Conference on Systems Man and Cybernetics, SMC’97, Orlando, FL, October, pp 3030–3035

  • Boger Z (1992) Application of neural networks to water and wastewater treatment plant operation. Instrum Soc Am Trans 31(1):25–33

    Google Scholar 

  • Bush MD, Cuypers M, Roggero F, Syversveen A-R (2002) Comparison of production forecast uncertainty quantification methods—an integrated study, Delft, The Netherlands. http://www.nitg.tno.nl/punq/cases/punqs3/PUNQS3paper/index.htm

  • Centilmen A, Ertekin T, Grader AS (1999) Applications of neural networks in multiwell field development. Paper SPE 56433 presented at the 1999 SPE Annual Technical Conference & Exhibition, Houston, TX, October, pp 3–6

  • Chan N (1993) Robustness of the multiple realization method for stochastic hydraulic aquifer management. Water Resour Res 29(9):3159–3167

    Google Scholar 

  • Chan N (1994) Partial infeasibility method for chance-constrained aquifer management. ASCE J Water Resour Plan Manage 120(1):70–89

    Google Scholar 

  • Chang L-C, Shoemaker CA, Liu PLF (1992) Optimal time-varying pumping rates for groundwater remediation: application of a constrained optimal control algorithm. Water Resour Res 28:3157–3173

    Google Scholar 

  • Chrsitakos G, Killam BR (1993) Sampling design for classifying contaminant level using annealing search algorithms. Water Resour Res 29(12):4063–4076

    Google Scholar 

  • Cieniawski SE, Eheart JW, Ranjithan SR (1995) Using genetic algorithms to solve a multiobjective groundwater monitoring problem. Water Resour Res 31(2):399–409

    Google Scholar 

  • Corson A, Meystel A, Otsu F, Uzzaman S (1995) Semiotic multiresolutional analysis of a power plant, in architectures for semiotic modeling and situation analysis in large complex systems. In: Proceedings of the 1995 ISIC Workshop, Monterey, CA, pp 401–405

  • Culver TB, Shoemaker CA (1992) Dynamic optimal control for groundwater remediation with flexible management periods. Water Resour Res 28(3):629–641

    Google Scholar 

  • Culver TB, Shoemaker CA (1993) Optimal control for groundwater remediation by differential dynamic programming with quasi-Newton approximations. Water Resour Res 29(4):823–831

    Google Scholar 

  • Cushman JH (1984) On unifying the concepts of scale, instrumentation, and stochastic in the development of multiphase transport theory. Water Resour Res 20(11):1668–1676

    Google Scholar 

  • Cushman JH (1986) On measurement, scale, and scaling. Water Resour Res 22(2):129–134

    Google Scholar 

  • Cushman JH (1990) An introduction to hierarchical porous media. In: Cushman JH (ed) Dynamics of fluids in hierarchical porous media. Academic, New York, pp 1–5

    Google Scholar 

  • Dagan G (1986) Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale. Water Resour Res 22(9):120S–134S

    Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dagan G, Neuman SP (1997) Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Dettinger MD, Wilson JL (1981) First-order analysis of uncertainty in numerical models of groundwater flow, 1. Mathematical development. Water Resour Res 17:149–161

    Google Scholar 

  • Dou C, Woldt W, Dahab M, Borgardi I (1997) Transient groundwater flow simulations using a fuzzy set approach. Ground Water 35(2):205–215

    Google Scholar 

  • Dougherty DE, Marryott RA (1991) Optimal groundwater management 1. Simulated annealing. Water Resour Res 27(10):2493–2508

    Google Scholar 

  • Eidi AL, Holden L, Reiso E, Aanonsen SI (1994) Automatic history matching by use of response surfaces and experimental design. Paper presented at the 4th European Conference on the Mathematics of Oil Recovery, Roros, Norway, 7–10 June 1994

  • Eigbe U et al (1998) Kalman filtering in groundwater flow modeling: problems and prospects. Stochast Hydrol Hydraul 12(1):15–32

    Google Scholar 

  • Erickson MA, Mayer A, Horn J (2002) Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA). Adv Water Resour 25(1):51–56

    Google Scholar 

  • Feinerman E, Bresler E, Dagan G (1985) Optimization of a spatially variable resource: an illustration for irrigated crops. Water Resour Res 12:793–800

    Google Scholar 

  • Ferré TPA, Binley A, Blasch KW, Callegary JB, Crawford SM, Fink JB, Flint AL, Flint LE, Izbicki JA, Levitt MT, Hoffmann JP, Pool DR, Scanlon B (2004) A conceptual framework for the application of geophysics to recharge monitoring. USGS-WRD (in press)

  • Fink JB (2000) The application of electrical geophysical methods to hydrologic problems. In: Arizona Hydrological Soc Ann Symp, oral presentation, September, pp 20–22

  • Fink JB (2001) Vadose zone injection monitoring with electrical geophysics. In: Arizona Hydrological Soc Ann Symp, oral presentation, September, pp 12–15

  • Freeze RA, Massmann J, Smith L, Sperling T, James B (1992) Hydrogeological decision analysis. Ground Water Publishing Company, Dublin, OH, 72 pp

    Google Scholar 

  • Freeze RA, Gorelick SM (1999) Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation. Ground Water 37(6):934–954

    Google Scholar 

  • Georgakakos AP, Vlatsa DA (1991) Stochastic control of ground water systems. Water Resour Res 27(8):2077–2090

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithm in search, optimization, and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Gordon E, Shamir U, Bensabat J (2000) Optimal management of a regional aquifer under salinization conditions. Water Resour Res 36(11):3193–3204

    Google Scholar 

  • Gorelick SM (1987) Sensitivity analysis of optimal groundwater contaminant capture curves: spatial variability and robust solutions. In: Solving ground water problems with models. Proceedings of the National Water Well Association Conference , pp 133–146

  • Gorelick SM (1997) Incorporating uncertainty into aquifer management models. In: Dagan G, Neuman SP (eds) Subsurface flow and transport. Cambridge University Press, Cambridge, pp 101–112

  • Gorelick SM, Freeze RA, Donohue D, Keely JF (1993) Groundwater contamination: optimal capture and containment. Lewis Publishers, Chelsea, MI, 385 pp

    Google Scholar 

  • Guterman H (1994) Application of principal component analysis to the design of neural networks. Neural, Parallel Scientific Comput 2:43–54

    Google Scholar 

  • Gűyagűler R, Horne N (2001) Uncertainty assessment of well placement optimization. SPE 71625, 2001 [with reference to http://www.nitg.tno.nl/punq/index.htm: Production forecasting with uncertainty quantification (PUNQ)—a comparative study, Netherlands Institute of Applied Geoscience, TNO, National Geological Survey, Elf Exploration Production, 2002]

  • Gűyagűler B, Horne RN, Rogers L, Rosenzweig JJ (2000) Optimization of well placement in a Gulf of Mexico waterflooding project. Paper SPE 63221 presented at the 2000 SPE Annual Technical Conference and Exhibition, Dallas, TX, October, pp 1–4

  • Guadagnini A, Neuman SP (1999) Nonlocal and localised analyses of conditional mean steady state flow in bounded, randomly nonuniform domains, 2. Computational examples. Water Resour Res 35(10):3019–3039

    Google Scholar 

  • Hinch EJ (1991) Perturbation methods, Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging, A tutorial. Statist Sci 14(4):382–417

    Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A nitiched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation (ICEC’ 94), Piscataway, NJ. IEEE Service Center, pp 82–87

  • James B, Gorelick SM (1994) When enough is enough: the worth of monitoring data in aquifer remediation design. Water Resour Res 30(12):3499–3513

    Google Scholar 

  • Jones L, Willis R, Yeh WW-G (1987) Optimal control of nonlinear groundwater hydraulics using differential dynamic programming. Water Resour Res 23(11):2097–2106

    Google Scholar 

  • Jones L (1992) Adaptive control of ground-water hydraulics. ASCE J Water Resour Plan Manage 118(1):1–17

    Google Scholar 

  • Kessler A, Glodberg I (2004) Optimal Operation of the Water Resources in Ramat Hagolan. In: Proceedings of The Kinneret Lake Workshop, The Israeli Water Resources Association

  • Kumar SV, Ranjithan S (2002) Evaluation of the constraint method-based multiobjective evolutionary algorithm (CMEA) for a three-objective optimization problem. In: Langdon et al (eds) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, New York, 9–13 July 2002. Morgan Kaufmann, pp 431–438

  • Landa JL, Gűyagűler B (2003) A methodology for history matching and the assessment of uncertainties associated with flow prediction, SPE 84465

  • Lee S-I, Kitanidis PK (1991) Optimal estimation and scheduling in aquifer remediation with incomplete information. Water Resour Res 27(9):2203–2217

    Google Scholar 

  • Lee S-I, Kitanidis PK (1996) Optimization of monitoring well installation time and location during aquifer decontamination. Water Resour Manage 10:439–462

    Google Scholar 

  • Loughlin DH, Ranjithan S, Baugh JW, Brill ED (2001) Genetic algorithm approaches for addressing unmodeled objectives. Eng Optim 33:549–569

    Google Scholar 

  • Lobbrecht AH, Solomatine DP (2002) Machine learning in real-time control of water systems. Urban Water 4:283–289

    Google Scholar 

  • Maddock T III (1972) Algebraic technological functions from a simulation model. Water Resour Res 8(1):129–134

    Google Scholar 

  • Maddock T III (1973) Management model as a tool for studying the worth of data. Water Resour Res 9:270–280

    Google Scholar 

  • Maskey S, Dibike YB, Jonoski A, Solomatine D (2000) Groundwater model approximation with artificial neural network for selecting optimal pumping strategy for plume removal. In: Schleider O, Zijderveld A (eds) AI methods in civil engineering applications. Cottbus, pp 67–80

  • Maskey S, Jonoski A, Solomatine DP (2002) Groundwater remediation strategy using global optimization algorithms. ASCE J Water Resour Plan Manage 128(6):431–440

    Google Scholar 

  • Massmann J, Freeze RA (1987a) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy, 1. Water Resour Res 23:351–367

    Google Scholar 

  • Massmann J, Freeze RA (1987b) Groundwater contamination from waste management sites: the interaction between risk-based engineering design and regulatory policy, 2. Water Resour Res 23:368–380

    Google Scholar 

  • McKinney DC, Gates GB, Lin M-D (1994) Groundwater resource management models: a comparison of genetic algorithms and nonlinear programming. In: Peters A et al (eds) Numerical methods in water resources. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mei CC, Auriault J-L (1989) Mechanics of heterogeneous porous media with several spatial scales. Proc R Soc London Ser A 426:391–423

    Google Scholar 

  • Meystel A, Uzzaman S (2000) Multiresolutional decision support system. US Patent, No. 6102958

  • Meystel A, Albus J (2002) Intelligent systems: architectures, design, control. Wiley, New York

    Google Scholar 

  • Meystel A (1991) Autonomous mobile robots: vehicles with cognitive control. World Scientific, Singapore

    Google Scholar 

  • Meystel A (1995) Semiotic modeling and situation analysis: an introduction (AdRem, 1995)

    Google Scholar 

  • Meystel A (1986) Planning in a hierarchical nested controller for autonomous robots. In: Proceedings of IEEE 25th Conference on Decision Control, Athens, Greece. pp 1237–1249

  • Meystel A, Andrusenko J (2001) Simulating E. coli performance. In: Proceedings of the Workshop PERMIS’2001, NIST, Gaithersburg

  • Meystel A (2002) Intelligent control. In: Encyclopedia of physical science and technology, Vol. 8, 3rd edn. Academic, New York, pp 1–24

    Google Scholar 

  • Meystel A (1997) Learning algorithms generating multigranular hierarchies. In: Mirkin B, McMorris FR, Roberts FS, Rzhetsky A (eds) Mathematical hierarchies and biology, DIMACS series in discrete mathematics, Vol. 37. Am Mathematic Soc, Charles Street Providence, RI

    Google Scholar 

  • Meystel A (2003) Multiresolutional hierarchical decision support systems. In: IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, vol 33, no. 1. ITCRFH, pp 86–101

  • Morgan DR, Eheart JW, Valocchi AJ (1993) Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour Res 29(3):551–561

    Google Scholar 

  • Murray D, Yakowitz S (1979) Constrained differential dynamic programming and its application to multireservoir control. Water Resour Res 15(4):1017–1027

    Google Scholar 

  • Neuman SP, Orr S, Levin O, Paleologos E (1992) Theory and high-resolution finite element analysis of two-dimensional and three-dimensional effective permeability in strongly heterogeneous porous media. In: Russell TF, Ewing RE, Brebbia CA, Gray WG, Pinder GF (eds) Computational methods in water resources IX, Vol. 2: mathematical modeling in water resources. Elsevier, New York

    Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Neuman SP, Orr S (1993) Prediction of steady state flow in nonuniform geologic media by conditional moments: exact nonlocal formalism, effective conductivities, and weak approximation. Water Resour Res 9(2)

    Google Scholar 

  • Neuman SP, Guadagnini A (1999) A new look at traditional deterministic flow models and their calibration in the context of randomly heterogeneous media, 189–197. In: Proceedings of ModelCARE 99, International Conference on Calibration and Reliability in Groundwater Modelling, ETH, Zurich, Switzerland, September 1999

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of alternative conceptual-mathematical models. Stochast Environ Res Risk Assessment 17(5):291–305, DOI:10.1007/s00477-003-0151-7

    Google Scholar 

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites, NUREG/CR-6805. US Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  • Orr S (1993) Stochastic approach to steady state flow in nonuniform geologic media. PhD dissertation, University of Arizona

  • Orr S, Neuman SP (1994) Operator and integro-differential representations of conditional and unconditional stochastic subsurface flow. J Stochast Hydrol Hydraul 8(2):157–172

    Google Scholar 

  • Orr S (2002a) Uncertain predictions of flow and transport in random porous media: the implications for process planning and control. In: Messina ER, Meystel AM (eds) Measuring the performance and intelligence of systems: Proceedings of the PerMIS Workshop. NIST Specl Publ 990, August 13–15, 2002, pp 435–441

  • Orr S (2002b) Enhanced heap leaching—I. Insights. Mining Eng 54(9)

  • Orr S, Vesselinov V (2002) Enhanced heap leaching—II. Applications. Mining Eng 54(10):49–55

    Google Scholar 

  • Pan Y, Horne RN (1998) Improved methods for multivariate optimization of field development scheduling and well placement design. Paper SPE 49055 presented at the 1998 SPE Annual Technical Conference & Exhibition, New Orleans, Texas, September, pp 27–30

  • Philbrick CR, Kitanidis PK (1998) Optimal conjunctive-use operations and plans. Water Resour Res 34(5):1307–1316

    Google Scholar 

  • Philbrick CR, Kitanidis PK (2000) Improved dynamic programming methods for optimal control of lumped parameter stochastic systems. Operations Res

    Google Scholar 

  • Reed P, Minsker BS (2004) Striking the balance: long-term groundwater monitoring design for conflicting objectives. J Water Resour Plan Manage 130(2):140–149

    Google Scholar 

  • Ranjithan S, Eheart JW, Garrett JH Jr (1993) Neural net work-based screening for groundwater reclamation under uncertainty. Water Resour Res 29(3):563–574

    Google Scholar 

  • Rian DT, Hage A (1994) Automatic optimization of well locations in a North Sea Fractured Chalk Reservoir using a front tracking reservoir simulator. Paper SPE 28716 presented at the 1994 SPE International Petroleum & Exhibition of Mexico, Veracruz, Mexico, October, pp 10–13

  • Ritzel BJ, Eheart JW, Ranjithan SR (1994) Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resour Res 30(5):1589–1603

    Google Scholar 

  • Rizzo DM, Dougherty DE (1994) Characterization of Aquifer Properties using artificial neural networks: Neural Kriging. Water Resour Res 30: 483-497

    Google Scholar 

  • Rogers LL, Dowla FU (1994) Optimal groundwater remediation using artificial neural networks with parallel solute transport. Water Resour Res 30(2):458–481

    Google Scholar 

  • Rogers LL, Dowla FU, Johnson VM (1995) Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Environ Sci Technol 29(5):1145–1155

    Google Scholar 

  • Saridis GN (1985) Foundation of the theory of Intelligent control. In: IEEE Workshop on Intelligent Control

  • Schaffer JD (1984) Some experiments in machine learning using vector calculated genetic algorithms. PhD dissertation, Vanderbilt University, Nashville, TN

  • Sperling T, Freeze RA, Massmann J, Smith L, James B (1992) Hydrologic decision analysis: application to design of a groundwater control system at an open pit mine. In: Freeze RA, Massmann J, Smith L, Sperling T, James B (eds) Hydrogeological decision NGWA. Ground Water Pub Company, Dublin, OH, pp 43–56

    Google Scholar 

  • Stoisits RF, Crawford KD, MacAllister DJ, Lawal AS, Ogbe DO (1999) Production optimization at the Kuparuk River field utilizing neural networks and genetic algorithms. Paper SPE 52177 presented at the 1999 Mid-Continent Operations Symposium, Oklahoma City, Oklahoma, March, pp 28–31

  • Tartakovsky DM, Neuman SP (1998) Transient flow in bounded randomly heterogeneous domains. Exact conditional moment equations and recursive approximations. Water Resour Res 34(1):1–12

    Google Scholar 

  • Tse E, Bar-Shalom Y, Meier L (1973) Wides sense dual control for nonlinear stochastic systems. IEEE Trans Autom Control 18(2):98–108

    Google Scholar 

  • Tucciarelli T, Pinder G (1991) Optimal data acquisition strategy for the development of a transport model for groundwater remediation. Water Resour Res 27(4):77–588

    Google Scholar 

  • Tung Y (1986) Groundwater management by chance-constrained model. ASCE J Water Resour Plan Manage 112(1):1–19

    Google Scholar 

  • Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under uncertainty. Water Resour Res 23(7):1162–1174

    Google Scholar 

  • Wagner BJ, Gorelick SM (1989) Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: from data to design. Water Resour Res 25(10)

    Google Scholar 

  • Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty: stochastic programming approaches and the value of information. Water Resour Res 28(5):1233–1246

    Google Scholar 

  • Wagner BJ (1995a) Recent advances in simulation-optimization ground-water management modeling. In: Vogel R (ed) US Natl Rep Int Union Geod Geophys 1991–1994. Rev Geophys 33:1021–1028

    Google Scholar 

  • Wagner BJ (1995b) Sampling design methods for groundwater modeling under uncertainty. Water Resour Res 31(10):2581–2591

    Google Scholar 

  • Wang W, Ahlfeld DP (1994) Optimal groundwater remediation with well location as a decision variable: model development. Water Resour Res 30(5):1605–1618

    Google Scholar 

  • Whiffen GJ, Shoemaker CA (1993) Nonlinear weighted feedback control of groundwater remediation under uncertainty. Water Resour Res 29(9):3277–3289

    Google Scholar 

  • Wong P, Aminzadeh F, Nikravesh M (eds) (2002) Soft computing for reservoir characterization and modeling. Pysica-Verlag, Heidelberg

    Google Scholar 

  • Xiang Y, Sykes J, Thomson N (1995) Alternative formulations for optimal groundwater remediation design. J Water Resour Plan Manage 121:171–181

    Google Scholar 

  • Yakowitz SJ (1982) Dynamic programming applications in water resources. Water Resour Res 18(4):673–696

    Google Scholar 

  • Yakowitz SJ (1986) The stagewise Kuhn–Tucker condition and differential dynamic programming. IEEE Trans Autom Control AC-31(1):25–30

    Google Scholar 

  • Ye M, Neuman SP, Meyer DP (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated tuff. Water Resour Res (in press)

  • Zheng C, Wang P (1999) An integrated global and local optimization approach for remediation system design. Water Resour Res 35(1):137–148

    Article  Google Scholar 

  • Zheng C, Wang PP (2002) A field demonstration of the simulation-optimization approach for remediation system design. Ground Water 40(3):258–265

    Google Scholar 

  • Zhang Y, Greenwald R, Minsker B, Peralta R, Zheng C, Harre K, Becker D, Yeh L, Yager K (2004) Final cost and performance report: application of flow and transport optimization codes to groundwater pump & treat systems. TR-2238-ENV, NAVFAC, Naval Facility Engineering Command, Engineering Service Center, Port Hueneme, CA 93043-4370

    Google Scholar 

  • Zhang D (2002) Stochastic methods for flow in porous media: coping with uncertainties. Academic, San Diego, CA, ISBN 012–7796215, pp 350

    Google Scholar 

  • Ziegenbalg G (2000) The restoration of heavy metal contaminated sites by directed and controlled in situ crystallization processes. In: Proceedings 2000 Contaminated Sites Restoration Conference (Centre for Groundwater Studies, CSIRO), pp 753–760

Download references

Acknowledgement

We would like to acknowledge Dr. Cliff Voss (Executive Editor), Mr. Perry Olcott (Mananging Editor), and the three reviewers, particularly Dr. Peter Kitanidis, for their excellent and constructive comments; as well as several individuals who helped us bridge among disciplines, particularly, Mr. Tom Anderson (RMOTC), Dr. Xian-Juan Wen (ChevronTexaco), Dr. Dong Zhang (U. of Oklahoma), Dr. S.P. Neumann (U. of Arozina), and Dr. Larry Lake (U. of Texas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo Orr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orr, S., Meystel, A.M. Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system. Hydrogeol J 13, 223–246 (2005). https://doi.org/10.1007/s10040-004-0424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0424-3

Keywords

Navigation