Skip to main content
Log in

Experimental investigation of rapid penetration of cylindrical rods into granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Penetration into granular media entails a complicated process. A study is presented on the penetration of different cylindrical rods into dry fused quartz and transparent soil at an impact velocity of 5 m/s under measurement of internal flow fields. The influences of the rod nose shape and rod size on penetration are examined. The penetration depth history curves in dry fused quartz and transparent soil (saturated fused quartz) are different due to the hydrodynamic drag effect of the pore fluid. The penetration depth in dry fused quartz is larger than that in transparent soil. In dry fused quartz, the penetration depth of the cylindrical rod is notably related to the total drop height as a power function, which is not observed in transparent soil. The normalized penetration depth d/(Vs P0) is independent of the kinetic energy but depends on the cylindrical rod diameter in transparent soil. This study found that the collision time tc did not depend on the impact velocity (> 1.5 m/s) and geometry of the cylindrical rods. The scaled collision time Tc = tcsR2/(g2ρp)]−1/4 was linearly correlated with the scaled velocity V0(Rg)−1/2 during cylindrical rod penetration. The governing kinetic energy equation was extended to describe the penetration of cylindrical rods with different head shapes and sizes. Visualization with the transparent soil model indicated that the flat-head cylindrical rod could induce more vertical displacement but less lateral movement of soil particles. The cone-head cylindrical rod tended to induce both less horizontal and lateral displacement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Wang, W., Wu, Y., Wu, H., Yang, C.: Numerical analysis of dynamic compaction using FEM-SPH coupling method. Soil Dyn. Earthq. Eng. 140, 106420 (2021)

    Article  Google Scholar 

  2. Ahmed, M., Al Qadhi, S., Mallick, J.: Advances in projectile penetration mechanism in soil media. Appl. Sci. 10(19), 6810 (2020)

    Article  Google Scholar 

  3. Allen, W.A., Mayfield, E.B., Morrison, H.L.: Dynamics of a projectile penetrating into sand. J. Appl. Phys. 28(3), 370–376 (1957)

    Article  ADS  Google Scholar 

  4. Uehara, S.J., Ambroso, A.M., Ojha, P.R., Durian, J.D.: Low-Speed Impact Craters in Loose Granular Media. Phys. Rev. Lett. 90, 194301 (2003)

    Article  ADS  Google Scholar 

  5. Katsuragi, H., Durian, J.D.: Drag force scaling for penetration into granular media. Phys. Rev. E 87, 052208 (2013)

    Article  ADS  Google Scholar 

  6. Clark, H.A., Behringer, P.R.: Granular impact model as an energy-depth relation. Phys. Rev. Lett. 101, 64001 (2013)

    Google Scholar 

  7. Forresta, M.J., Grady, D.E.: Penetration experiments for normal impact into geological targets. Int. J. Solids Struct. 18(1), 229–234 (1982)

    Article  Google Scholar 

  8. Forrestal, M.J., Lee, L.M., Jenrette, B.D.: Laboratory-scale penetration experiments into geological targets to impact velocities of 2.1 km/s. J. Appl. Mech. 53(2), 317–320 (1986). https://doi.org/10.1115/1.3171758

    Article  ADS  Google Scholar 

  9. Omidvar, M., Malioche, J.D., Bless, S., Iskander, M.: Phenomenology of rapid projectile penetration into granular soils. Int. J. Impact Eng. 85, 146–160 (2015)

    Article  Google Scholar 

  10. Grantham, S.G., Goldrein, H.T., Proud, W.G., Field, J.E.: Digital speckle radiography: a new ballistic measurement technique. Imaging Sci. J. 51, 175–186 (2003)

    Article  Google Scholar 

  11. Guzman, L.I., Iskander, M., Bless, S.: Observation of projectile penetration into a transparent soil. Mech. Res. Commun. 70, 4–11 (2015)

    Article  Google Scholar 

  12. Collins, L.A., Addiss, W.J., Walley, M.S., Promratana, K., Bobaru, F., Proud, G.W., Williamson, M.D.: The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand. Int. J. Impact Eng. 38, 951–963 (2011)

    Article  Google Scholar 

  13. Ambroso, A.M., Kamien, D.R., Durian, J.D.: Dynamics of shallow impact cratering. Phys. Rev. E 72, 041305 (2005)

    Article  ADS  Google Scholar 

  14. Goldman, I.D., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Guzman, L.I., Iskander, M., Bless, S., Qi, C.: Terminal depth of penetration of spherical projectiles in transparent granular media. Granular Matter 16, 829–842 (2014). https://doi.org/10.1007/s10035-014-0528-y

    Article  Google Scholar 

  16. Hinch, J.: Particles impacting on a granular bed. J. Eng. Math. 84, 41–48 (2014)

    Article  MathSciNet  Google Scholar 

  17. Guo, J.: Exact solution for depth of impact crater into granular bed. J. Eng. Mech. 144(1), 06017018 (2018)

    Article  Google Scholar 

  18. Bless, S.J., Berry, D.T., Pedersen, B., Lawhorn W.: Sand penetration by high‐speed projectiles. American Institute of Physics Conference Series. American Institute of Physics, 1361–1364 (2009).

  19. Chian, C.S., Tan, C.V.B., Sarma, A.: Projectile penetration into sand: Relative density of sand and projectile nose shape and mass. Int. J. Impact Eng. 103, 29–37 (2017)

    Article  Google Scholar 

  20. Glößner, C., Moser, S., Külls, R.: Instrumented projectile penetration testing of granular materials. Exp. Mech. 57(2), 261–272 (2017)

    Article  Google Scholar 

  21. Omidvar, M., Iskander, M., Bless, S.: Soil-projectile interactions during low velocity penetration. Int. J. Impact Eng 93, 211–221 (2016)

    Article  Google Scholar 

  22. Newhall, K.A., Durian, D.J.: Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68(6), 060301 (2003)

    Article  ADS  Google Scholar 

  23. Takita, H., Sumita, I.: Low-velocity impact cratering experiments in a wet sand target. Phys. Rev. E 88(2), 022203 (2013)

    Article  Google Scholar 

  24. Seguin, A., Bertho, Y., Gondret, P., Crassouos, J.: Sphere penetration by impact in a granular medium: A collision process. EPL (Europhys. Lett.) 88(4), 44002 (2009)

    Article  ADS  Google Scholar 

  25. Bragov, M.A., Blandin, V.V., Igumnov, A.L., Kotov, L.V., Kruszka, L., Lomunov, K.A.: Impact and penetration of cylindrical bodies into dry and water-saturated sand. Int. J. Impact Eng. 122, 197–208 (2018)

    Article  Google Scholar 

  26. Iskander, M.G., Lai, J., Oswald, C.J., Mannheimer, R.J.: Development of a transparent material to model the geotechnical properties of soils. Geotech. Test. J., GTJODJ 17(4), 425–433 (1994)

    Article  Google Scholar 

  27. Ni, Q., Hird, C.C., Guymer, I.: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Géotechnique 60(2), 121–132 (2010)

    Article  Google Scholar 

  28. Song, Z., Hu, Y., O’Loughlin, C., Randolph, F.M.: Loss in anchor embedment during plate anchor keying in clay. J. Geotech. Geoenviron. Eng. 135(10), 1475–1485 (2009)

    Article  Google Scholar 

  29. Mckelvey, A., Sivakumar, V., Bell, A., Graham, J.: Modelling vibrated stone columns in soft clay. Geotech. Eng. 157(3), 137–149 (2004)

    Article  Google Scholar 

  30. Sadek, S., Iskander, M., Liu, J.: Geotechnical properties of transparent silica. Can. Geotech. J. 39(1), 111–124 (2002)

    Article  Google Scholar 

  31. Zhao, H., Ge, L.: Investigation on the shear moduli and damping ratios of silica gel. Granular Matter 16(4), 449–456 (2014)

    Article  Google Scholar 

  32. Lo, H.-C., Tabe, K., Iskander, M., Yoon, S.-H.: A transparent water-based polymer for simulating multiphase flow. Geotech. Test. J. 33(1), 1–13 (2010)

    Google Scholar 

  33. Ezzein, M.F., Bathurst, J.R.: A transparent sand for geotechnical laboratory modelling. Geotech. Test. J. 34(6), 590–601 (2011). https://doi.org/10.1520/GTJ103808

    Article  Google Scholar 

  34. Kong, G.Q., Cao, Z.H., Zhou, H., Sun, X.J.: Analysis of piles under oblique pullout load using transparent-soil models. Geotech. Test. J. 38(5), 725–738 (2015). https://doi.org/10.1520/GTJ20140109

    Article  Google Scholar 

  35. Cao, Z., Kong, G., Liu, H.: Model tests on 3-D soil deformation during pile penetration using transparent soils. Chinese J. Geotech. Eng. 36(2), 395–400 (2014)

    Google Scholar 

  36. Sang, Y., Wang, Z., Yu, S., Zhao, H.: The loading test on the singe pile with pile cap in transparent soil model. Geotech. Test. J. 42(2), 20170153 (2018)

    Article  Google Scholar 

  37. Wallace, J.F., Rutherford, C.J.: Geotechnical Properties of LAPONITE RD®. Geotech. Test. J. 38(5), 20140211 (2015)

    Article  Google Scholar 

  38. Beemer, R. D., Aubeny, C.: Digital image processing of drag embedment anchors in translucent silicate gel. In K. Bannister (Ed.), GeoManitoba 2012 Richmond, British Columbia: Canadian Geotechnical Society (2012).

  39. Shelton, J.T.: OMNI-Maxtrade anchor development and technology. Oceans (2007). https://doi.org/10.1109/OCEANS.2007.4449415

    Article  Google Scholar 

  40. White, J.D., Take, A.W., Bolton, D.M.: Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7), 619–631 (2003)

    Article  Google Scholar 

  41. Dunatunga, S., Kamrin, K.: Continuum modeling of projectile impact and penetration in dry granular media. J. Mech. Phys. Solids 100, 45–60 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  42. Ciamarra, P.M., Lara, H.A., Lee, T.A., Goldman, I.D., Vishik, I., Swinney, L.H.: Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92, 194301 (2004)

    Article  ADS  Google Scholar 

  43. Katsuragi, H., Durian, J.D.: Unified force law for granular impact cratering. Nat. Phys. 3, 420–423 (2007)

    Article  Google Scholar 

  44. Katsuragi, H., Blum, J.: The physics of protoplanetesimal dust agglomerates. x. mechanical properties of dust aggregates probed by a solid-projectile impact. ApJ 851(1), 23 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11672066, 217020711). The authors greatly appreciate the provided financial support, which made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, D., Liu, C. et al. Experimental investigation of rapid penetration of cylindrical rods into granular materials. Granular Matter 24, 22 (2022). https://doi.org/10.1007/s10035-021-01181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01181-8

Keywords

Navigation