Skip to main content
Log in

Non-invasive measurement of floating–sinking motion of a large object in a gas–solid fluidized bed

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A Lagrangian sensor system has been established to non-invasively measure both the vertical position and dynamic force acting on itself. It consists of a 3-axis acceleration sensor, a 3-axis magnetometer, a microcontroller, a wireless module, batteries, and external electromagnetic coils. In this study, we applied the system to a free-moving coarse object in a gas–solid fluidized bed. The floating and sinking motions of the object in the fluidized bed are essentially caused by differences between its density and the apparent density of the fluidized media. However, the object sometimes shows strange behavior under the influence of variance in the fluidization state. We measured the temporal change of the upward force acting on the object as well as the vertical position, which is invisible from the outside. The experimental results indicate that the force acting on the object differs significantly between the floating and sinking states and is greatly complicated by interference with rising bubbles in the fluidized bed. The probability density of the vertical position of the object shows that its motion is explained not only by hydrostatic effects, but also by inhomogeneity of the fluidization state in the bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brennen, C.E.: Fundamentals of Multiphase Flows. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  2. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Dover Pub. Inc., Mineola (1978)

    Google Scholar 

  3. Wadke, P.M., Hounslow, M.J., Salman, A.D.: The smart sphere: experimental results. Chem. Eng. Res. Des. 83, 1298–1302 (2005)

    Article  Google Scholar 

  4. Wadke, P.M., Salman, A.D., Hounslow, M.J.: The smart temperature sphere: application in rotary drum mixers. Pow. Tech. 185, 274–279 (2008)

    Article  Google Scholar 

  5. Shew, W.L., Gasteuil, Y., Gibert, M., Metz, P., Pinton, J.-F.: Instrumented tracer for Lagrangian measurements in Rayleigh–Bnard convection. Rev. Sci. Instrum. 78, 065165 (2007)

    Article  Google Scholar 

  6. Gasteuil, Y., Shew, W.L., Gibert, M., Chillá, F., Castaing, B., Pinton, J.-F.: Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh–Bénard convection. Phys. Rev. Lett. 99, 234302 (2007)

    Article  ADS  Google Scholar 

  7. Harada, S., Kobayashi, Y., Sawano, T., Noguchi, E.: Direct measurement of fluid force on a particle in liquid by telemetry system. Int. J. Multiphase Flow 37, 898–905 (2011)

    Article  Google Scholar 

  8. Oshitani, J., Sasaki, T., Tsuji, T., Higashida, K., Chan, D.Y.C.: Anomalous sinking of spheres due to local fluidization of apparently fixed powder beds. Phys. Rev. Lett. 116, 068001 (2016)

    Article  ADS  Google Scholar 

  9. Penn, A., Tsuji, T., Brunner, D.O., Boyce, C.M., Pruessmann, K.P., Müller, C.R.: Real-time probing of granular dynamics with magnetic resonance. Sci. Adv. 3, e1701879 (2017)

    Article  ADS  Google Scholar 

  10. Oshitani, J., Kajimoto, S., Yoshida, M., Franks, G.V., Kubo, Y., Nakatsukasa, S.: Continuous float-sink density separation of lump iron ore using a dry sand fluidized bed dense medium. Adv. Pow. Tech. 24, 468–472 (2013)

    Article  Google Scholar 

  11. Kawaguchi, T.: MRI measurement of granular flows and fluid-particle flows. Adv. Powder Technol. 21, 235–241 (2010)

    Article  Google Scholar 

  12. Sun, J., Yan, Y.: Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review. Meas. Sci. Technol. 27, 112001 (2016)

    Article  ADS  Google Scholar 

  13. Higashida, K., Rai, K., Yoshimori, W., Ikegai, T., Tsuji, T., Harada, S., Oshitani, J., Tanaka, T.: Dynamic vertical forces working on a large object floating in gas-fluidized bed: discrete particle simulation and Lagrangian measurement. Chem. Eng. Sci. 151, 105–115 (2016)

    Article  Google Scholar 

  14. Thiele, S., Silva, J.D., Hampel, U.: Autonomous sensor particle for parameter tracking in large vessels. Meas. Sci. Technol. 21, 085201 (2010)

    Article  ADS  Google Scholar 

  15. Reinecke, S.F., Deutschmann, A., Jobst, K., Kryk, H., Friedrich, E., Hampel, U.: Flow following sensor particlesValidation and macro-mixing analysis in a stirred fermentation vessel with a highly viscous substrate. Biochem. Eng. J. 69, 159–171 (2014)

    Article  Google Scholar 

  16. Reinecke, S.F., Deutschmann, A., Jobst, K., Hampel, U.: Macro-mixing characterisation of a stirred model fermenter of non-Newtonian liquid by flow following sensor particles and ERT. Chem. Eng. Res. Des. 118, 1–11 (2017)

    Article  Google Scholar 

  17. Köhler, A., Rasch, A., Pallarés, D., Johnsson, F.: Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking. Powder Technol. 316, 492–499 (2017)

    Article  Google Scholar 

  18. Akeila, E., Salcic, Z., Swain, A.: Smart pebble for monitoring riverbed sediment transport. IEEE. Sens. J. 10, 1705–1717 (2010)

    Article  ADS  Google Scholar 

  19. Neuwirth, J., Antonyuk, S., Heinrich, S., Jacob, M.: Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. Chem. Eng. Sci. 21, 151–163 (2013)

    Article  Google Scholar 

  20. Sánchez-Colina, G., Alonso-Llanes, L., Martínez, E., Batista-Leyva, A.J., Clement, C., Fliedner, C., Toussaint, R., Altshuler, E.: Note: lock-in accelerometry to follow sink dynamics in shaken granular matter. Rev. Sci. Instrum. 85, 126101 (2014)

    Article  ADS  Google Scholar 

  21. Altshuler, E., Torres, H., González-Pita, A., Sánchez-Colina, G., Pérez-Penichet, C., Waitukaitis, S., Hidalgo, R.C.: Settling into dry granularmedia in different gravities. Geophys. Res. Lett. 41, 3032–3037 (2014)

    Article  ADS  Google Scholar 

  22. Sunday, C., Murdoch, N., Cherrier, O., Morales Serrano, S., Valeria Nardi, C., Janin, T., Avila Martinez, I., Gourinat, Y., Mimoun, D.: A novel facility for reduced-gravity testing: a setup for studying low-velocity collisions into granular surfaces, Rev. Sci. Instrum. 87, 084504 (2016)

    Article  ADS  Google Scholar 

  23. Caviezel, A., Gerber, W.: Brief communication: measuring rock decelerations and rotation changes during short-duration ground impacts. Nat. Hazards Earth Syst. Sci. 18, 3145–3151 (2018)

    Article  ADS  Google Scholar 

  24. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  25. Geldart, D.: Types of gas fluidization. Powder Technol. 7, 285–292 (1973)

    Article  Google Scholar 

  26. Tsuji, T., Higashida, K., Okuyama, Y., Tanaka, T.: Fictitious particle method: a numerical model for flows including dense solids with large size difference. AIChE J. 60, 1606–1620 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusaku Harada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimori, W., Ikegai, T., Uemoto, K. et al. Non-invasive measurement of floating–sinking motion of a large object in a gas–solid fluidized bed. Granular Matter 21, 42 (2019). https://doi.org/10.1007/s10035-019-0897-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0897-3

Keywords

Navigation