Skip to main content
Log in

A cohesionless micromechanical model for gas hydrate-bearing sediments

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Proper representation and understanding of the mechanical response of the sediment is a prerequisite for successful future gas production from gas hydrate-bearing sediments, in view of the geotechnical issues encountered in recent field trials. Recent investigations have indicated that the increase of sediment strength, due to hydrate existence, is of frictional nature and associated with changes in the kinematic response, and not necessarily due to cementation. Following this idea, this paper presents a non-cohesive micro model for methane-hydrate-bearing sediments, where the hydrate is represented as solid particles precisely positioned between sand particles, contributing to the skeleton response even for small strains. Analytical expressions relating between the geometry, inter-particle properties, and the mechanical response of the hydrate-bearing sediment are developed in the paper. Global stress-strain response is evaluated under simulated triaxial loading, exhibiting stiffer, stronger and more dilative response compared to pure sand samples. It is shown that a trade-off exists between the particle size and the inter-particle friction, which can be unified using a participation factor related to the pore size distribution. As observed in recent experimental investigations, the suggested model results in a cohesionless response when analyzed using Rowe’s stress dilatancy theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brugada, J., Cheng, Y.P., Soga, K., Santamarina, J.C.: Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granul. Matter 12(5), 517–525 (2010). https://doi.org/10.1007/s10035-010-0210-y

    Article  Google Scholar 

  2. Burwicz, E., Rüpke, L., Wallmann, K.: Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction–transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 75(16), 4562–4576 (2011). https://doi.org/10.1016/j.gca.2011.05.029

    Article  ADS  Google Scholar 

  3. Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthür, D., Kuhs, W.F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochem. Geophys. Geosyst. 16(6), 1711–1722 (2015). https://doi.org/10.1002/2015GC005811

    Article  ADS  Google Scholar 

  4. Collett, T.S., Boswell, R., Cochran, J.R., Kumar, P., Lall, M., Mazumdar, A., Ramana, M.V., Ramprasad, T., Riedel, M., Sain, K., Sathe, A.V., Vishwanath, K.: Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01. Mar. Pet. Geol. 58(PA), 3–28 (2014). https://doi.org/10.1016/j.marpetgeo.2014.07.021

    Article  Google Scholar 

  5. Cundall, P.A.: Computer simulations of dense sphere assemblies. Stud. Appl. Mech. 20(C), 113–123 (1988). https://doi.org/10.1016/B978-0-444-70523-5.50021-7

    Article  Google Scholar 

  6. Dallimore, S.R., Wright, J.F., Nixon, F.M., Kurihara, M., Yamamoto, K., Fujii, T., Fujii, K., Numasawa, M., Yasuda, M., Imasato, Y., Schlumberger, K.K.: Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik gas hydrate production research well. In: 6th International Conference on Gas Hydrates (2008). https://doi.org/10.14288/1.0041137

  7. Freij-Ayoub, R., Tan, C., Clennell, B., Tohidi, B., Yang, J.: A wellbore stability model for hydrate bearing sediments. J. Pet. Sci. Eng. 57(1–2), 209–220 (2007). https://doi.org/10.1016/j.petrol.2005.10.011

    Article  Google Scholar 

  8. Gupta, S., Helmig, R., Wohlmuth, B.: Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs. Comput. Geosci. 19(5), 1063–1088 (2015). https://doi.org/10.1007/s10596-015-9520-9

    Article  MathSciNet  MATH  Google Scholar 

  9. He, J., Jiang, M.: Macro–micro mechanical property of pore-filling type methane hydrate-bearing sediment in true triaxial tests based on distinct element analysis. Rock Soil Mech. 37(10), 3026–3034 (2016)

    Google Scholar 

  10. He, J., Jiang, M.: Three-dimensional distinct element novel sample-preparing method and mechanical behavior for pore-filling type of methane hydrate-bearing soil. J. Tongji Univ. Nat. Sci. 44(5), 709–717 (2016)

    Google Scholar 

  11. Hyodo, M., Yoneda, J., Yoshimoto, N., Nakata, Y.: Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 53(2), 299–314 (2013). https://doi.org/10.1016/j.sandf.2013.02.010

    Article  Google Scholar 

  12. Itasca: PFC3D: particle flow code, User’s guide version 4.0. Minneapolis, USA (2008)

  13. Jiang, M., He, J., Wang, J., Chareyre, B., Zhu, F.: DEM analysis of geomechanical properties of cemented methane hydrate-bearing soils at different temperatures and pressures. Int. J. Geomech. 16(3), 04015087 (2015). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000612

    Article  Google Scholar 

  14. Jiang, M., Zhu, F., Liu, F., Utili, S.: A bond contact model for methane hydrate-bearing sediments with interparticle cementation. Int. J. Numer. Anal. Methods Geomech. 38(17), 1823–1854 (2014). https://doi.org/10.1002/nag.2283

    Article  Google Scholar 

  15. Jung, J.W., Santamarina, J.C., Soga, K.: Stress–strain response of hydrate-bearing sands: numerical study using discrete element method simulations. J. Geophys. Res. Solid Earth 117, B04202 (2012). https://doi.org/10.1029/2011JB009040

    Article  ADS  Google Scholar 

  16. Kimoto, S., Oka, F., Fushita, T.: A chemo–thermo–mechanically coupled analysis of ground deformation induced by gas hydrate dissociation. Int. J. Mech. Sci. 52(2), 365–376 (2010). https://doi.org/10.1016/j.ijmecsci.2009.10.008

    Article  MATH  Google Scholar 

  17. Klar, A., Soga, K., NG, M.: Coupled deformation–flow analysis for methane hydrate extraction. Géotechnique 60(10), 765–776 (2010). https://doi.org/10.1680/geot.9.P.079-3799

    Article  Google Scholar 

  18. Klar, A., Uchida, S., Soga, K., Yamamoto, K.: Explicitly coupled thermal flow mechanical formulation for gas-hydrate sediments. SPE J. 18(2), 196–206 (2013). https://doi.org/10.2118/162859-PA

    Article  Google Scholar 

  19. Kumar, P., Collett, T.S., Vishwanath, K., Shukla, K.M., Nagalingam, J., Lall, M.V., Yamada, Y., Schultheiss, P., Holland, M.: Gas-hydrate-bearing sand reservoir systems in the offshore of India: results of the India National Gas Hydrate Program Expedition 02. Methane Hydr. Newslett. 16(1), 1–20 (2016)

    Google Scholar 

  20. Kurihara, M., Sato, A., Funatsu, K., Ouchi, H., Yamamoto, K., Numasawa, M., Ebinuma, T., Narita, H., Masuda, Y., Dallimore, S.R., Wright, F., Ashford, D.I.: Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada. In: International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers (2010). https://doi.org/10.2118/132155-MS

  21. Masui, A., Haneda, H., Ogata, Y., Aoki, K.: Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: International Society of Offshore and Polar Engineers, Seoul, Korea (2005)

  22. Moridis, G.: Numerical studies of gas production from methane hydrates. SPE J. 8(04), 359–370 (2003). https://doi.org/10.2118/87330-PA

    Article  Google Scholar 

  23. Pinkert, S.: Rowe’s stress-dilatancy theory for hydrate-bearing sand. Int. J. Geomech. 17, 06016008 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000682

    Article  Google Scholar 

  24. Pinkert, S.: The lack of true cohesion in hydrate-bearing sands. Granul. Matter 19(3), 57 (2017). https://doi.org/10.1007/s10035-017-0742-5

    Article  Google Scholar 

  25. Pinkert, S., Grozic, J.L.H.: Prediction of the mechanical response of hydrate-bearing sands. J. Geophys. Res. Solid Earth 119(6), 4695–4707 (2014). https://doi.org/10.1002/2013JB010920

    Article  ADS  Google Scholar 

  26. Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. A Math. Phys. Eng. Sci. 269(1339), 500–527 (1962). https://doi.org/10.1098/rspa.1962.0193

    Article  ADS  Google Scholar 

  27. Rutqvist, J., Moridis, G.J.: Coupled hydrologic, thermal and geomechanical analysis of well bore stability in hydrate-bearing sediments. In: Offshore Technology Conference (2008). https://doi.org/10.4043/19572-MS

  28. Schoderbek, D., Farrell, H., Howard, J., Raterman, K., Silpngarmlert, S., Martin, K., Smith, B., Klein, P.: ConocoPhillips Gas Hydrate Production Test. Tech. rep., National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV, USA (2013). https://doi.org/10.2172/1123878

  29. Shen, Z., Jiang, M.: DEM simulation of bonded granular material. Part II: extension to grain-coating type methane hydrate bearing sand. Comput. Geotech. 75, 225–243 (2016)

    Article  Google Scholar 

  30. Shimizu, H., Kumazaki, T., Kume, T., Sasaki, S.: Elasticity of single-crystal methane hydrate at high pressure. Phys. Rev. B 65(21), 212102 (2002). https://doi.org/10.1103/PhysRevB.65.212102

    Article  ADS  Google Scholar 

  31. Uchida, S., Soga, K., Yamamoto, K.: Critical state soil constitutive model for methane hydrate soil. J. Geophys. Res. Solid Earth (2012). https://doi.org/10.1029/2011JB008661

  32. Van Baars, S.: Discrete element modelling of granular materials. Heron 41(2), 139–157 (1996)

    MathSciNet  Google Scholar 

  33. Yamamoto, K., Terao, Y., Fujii, T., Ikawa, T., Seki, M., Matsuzawa, M., Kanno, T.: Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In: Offshore Technology Conference (2014). https://doi.org/10.4043/25243-MS

  34. Yu, Y., Cheng, Y.P., Xu, X., Soga, K.: Discrete element modelling of methane hydrate soil sediments using elongated soil particles. Comput. Geotech. 80, 397–409 (2016). https://doi.org/10.1016/j.compgeo.2016.03.004

    Article  Google Scholar 

  35. Zhou, S., Chen, W., Li, Q., Zhou, J., Shi, H.: Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area. China Offshore Oil Gas 29(4), 1–8 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Klar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Assaf Klar is on leave from the Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, E., Klar, A. A cohesionless micromechanical model for gas hydrate-bearing sediments. Granular Matter 21, 36 (2019). https://doi.org/10.1007/s10035-019-0887-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0887-5

Keywords

Navigation