Skip to main content
Log in

Modelling axial dispersion of granular material in inclined rotating cylinders with bulk flow

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The axial dispersion of approximately monosized particles in rolling mode in rotating cylinders with bulk flow is examined using a Monte Carlo model and discrete element method (DEM) simulations. The Monte Carlo model predicts that the mean square displacement relative to the mean axial displacement of the bed undergoes oscillations in time. The nature of these oscillations depends on the fill level of the cylinder and the extent of particle mixing during avalanches. When the cylinder is half full the Monte Carlo model predicts undamped oscillations, whereas a filling fraction of 0.26 produces oscillations whose amplitude decreases with time. If mixing during avalanches is assumed to be perfect then the oscillations occur about a linear increase with time. In contrast, if it is assumed that the particles do not mix during avalanching, the oscillations occur about an increase with time which has a gradient which increases with time. There is good qualitative agreement between the Monte Carlo model with perfect mixing and the DEM when the filling fraction is 0.26. For a filling fraction of 0.5 the DEM data show oscillations about a faster than linear increase with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  2. Hill, K.M., Khakhar, D.V., Gilchrist, J.F., McCarthy, J.J., Ottino, J.M.: Proc. Natl. Acad. Sci. 96, 11701 (1999)

    Article  ADS  Google Scholar 

  3. Müller, C.R., Davidson, J.F., Dennis, J.S., Fennell, P.S., Gladden, L.F., Hayhurst, A.N., Mantle, M.D., Rees, A.C., Sederman, A.J.: Phys. Rev. Lett. 96, 154504 (2006)

    Article  ADS  Google Scholar 

  4. Aranson, I.S., Tsimring, L.S.: Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  5. Sandnes, B., Flekkøy, E.G., Knudsen, H.A., Måløy, K.J., See, H.: Nat. Comm. 2, 288 (2011)

    Article  ADS  Google Scholar 

  6. Seiden, G., Thomas, P.J.: Rev. Mod. Phys. 83, 1323 (2011)

    Article  ADS  Google Scholar 

  7. Ottino, J.M., Khakhar, D.V.: Annu. Rev. Fluid Mech. 32, 55 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fischer, R., Gondret, P., Rabaud, M.: Phys. Rev. Lett. 103, 128002 (2009)

    Article  ADS  Google Scholar 

  9. Ristow, G.H.: Europhys. Lett. 34, 263 (1996)

    Article  ADS  Google Scholar 

  10. Hajra, S.K., Khakhar, D.V.: Phys. Fluids 17, 013101 (2005)

    Article  ADS  Google Scholar 

  11. Zik, O., Stavans, J.: Europhys. Lett. 16, 255 (1991)

    Article  ADS  Google Scholar 

  12. Mellmann, J.: Powder Technol. 118, 251 (2001)

    Article  Google Scholar 

  13. Hehl, M., Kröger, H., Helmrich, H., Schügerl, K.: Powder Technol. 20, 29 (1978)

    Article  Google Scholar 

  14. Third, J.R., Müller, C.R.: Phys. Rev. E 86, 061314 (2012)

    Article  ADS  Google Scholar 

  15. Hogg, R., Cahn, D.S., Healy, T.W., Fuerstenau, D.W.: Chem. Eng. Sci. 21, 1025 (1966)

  16. Das Gupta, S., Khakhar, D.V., Bhatia, S.K.: Powder Technol. 67, 145 (1991)

  17. Taberlet, N., Richard, P.: Phys. Rev. E 73, 041301 (2006)

    Article  ADS  Google Scholar 

  18. Third, J.R., Scott, D.M., Scott, S.A.: Powder Technol. 203, 510 (2010)

    Article  Google Scholar 

  19. Christov, I.C., Stone, H.A.: Proc. Natl. Acad. Sci. 109, 16012 (2012)

    Article  ADS  Google Scholar 

  20. Pickering, R.W., Feakes, F., Fitzgerald, M.L.: J. Appl. Chem. 1, 13 (1951)

    Article  Google Scholar 

  21. Saeman, W.C.: Chem. Eng. Prog. 47, 508 (1951)

    Google Scholar 

  22. Vàhl, L., Kingma, W.: Chem. Eng. Sci. 1, 253 (1952)

    Article  Google Scholar 

  23. Kramers, H., Croockewit, P.: Chem. Eng. Sci. 1, 259 (1952)

    Article  Google Scholar 

  24. Rogers, R.S.C., Gardner, R.P.: Powder Technol. 23, 159 (1979)

    Article  Google Scholar 

  25. Rao, S.J., Bhatia, S.K., Khakhar, D.V.: Powder Technol. 67, 153 (1991)

    Article  Google Scholar 

  26. Scott, D.M., Davidson, J.F., Lim, S.-Y., Spurling, R.J.: Powder Technol. 182, 466 (2008)

    Article  Google Scholar 

  27. Rapaport, D.C.: Phys. Rev. E 65, 061306 (2002)

    Article  ADS  Google Scholar 

  28. Third, J.R., Scott, D.M., Scott, S.A., Müller, C.R.: Granul. Matter 13, 75 (2011)

    Article  Google Scholar 

  29. Gao, Y., Glasser, B.J., Ierapetritou, M.G., Cuitino, A., Muzzio, F.J., Beeckman, J.W., Fassbender, N.A., Borghard, W.G.: AIChE J. 59, 4068 (2013)

    Article  Google Scholar 

  30. Campbell, C.S.: J. Fluid Mech. 348, 85 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Kohav, T., Richardson, J.T., Luss, D.: AIChE J. 41, 2465 (1995)

    Article  Google Scholar 

  32. Davidson, J.F., McTait, G.E., Scott, D.M.: In: Fan, L.S., Knowlton, T. (eds.) Fluidization IX: Proceedings of the ninth engineering foundation conference on fluidization, pp. 397–414. Engineering Foundation, Durango (1998)

  33. McTait, G.E.: Residence times and solid flows in rotary kilns. Ph.D. thesis, University of Cambridge (1998)

  34. Li, S.Q., Yan, J.H., Li, R.D., Chi, Y., Cen, K.F.: Powder Technol. 126, 217 (2002)

    Article  Google Scholar 

  35. Ingram, A., Seville, J.P.K., Parker, D.J., Fan, X., Forster, R.G.: Powder Technol. 158, 76 (2005)

    Article  Google Scholar 

  36. Cundall, P.A., Strack, O.D.L.: Géotechnique 29, 47 (1979)

    Article  Google Scholar 

  37. Carley-Macauly, K.W., Donald, M.B.: Chem. Eng. Sci. 19, 191 (1964)

    Article  Google Scholar 

  38. Hogg, R., Fuerstenau, D.W.: Powder Technol. 6, 139 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.R. Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Third, J., Scott, D., Lu, G. et al. Modelling axial dispersion of granular material in inclined rotating cylinders with bulk flow. Granular Matter 17, 33–41 (2015). https://doi.org/10.1007/s10035-014-0542-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0542-0

Keywords

Navigation