Skip to main content
Log in

Single particle contact versus particle packing behavior: model based analysis of chemically modified glass particles

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Smooth spherical micro glass particles are the reference particle system to demonstrate the correlation between single contacts and the particle packing properties. To investigate the influence of the van der Waals attraction force, the particles will be functionalized to obtain hydrophilic and hydrophobic surfaces. To remove the impurities and hydrophilize the particle surfaces a very strong oxidizing agent is used—the peroxymonosulfuric acid. In order to generate a hydrophobic glass surface, the process of silanization is applied. The comprehensive force displacement model of elastic-plastic and adhesive contacts are discussed. Therefore the model ‘stiff particles with soft contacts’ is used to quantify and compare the elastic-plastic contact properties. In this work, the particle contacts are experimentally investigated by means of atomic force microscopy (AFM), nanoindentation and shear tests. While the AFM and nanoindenter measurements are aimed to analyse single particle contacts, shear tests are used for particle packing studies. The fundamental challenge and question is addressed and answered: How do the micro mechanical material properties change when the glass surfaces are functionalized? Do we obtain the same behavior for the used micro glass particles when we compare the different methods?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\hbox {a}_{0}\) :

Minimum molecular surface distance (nm)

\(\hbox {C}_\mathrm{H}\) :

Hamaker constant (J)

\(\upgamma \) :

Surface energy \((\hbox {mJ/m}^{2})\)

\(\upgamma _\mathrm{D}\) :

Surface energy dispersive fraction \((\hbox {mJ/m}^{2})\)

\(\upgamma _\mathrm{P}\) :

Surface energy polar fraction \((\hbox {mJ/m}^{2})\)

d:

Particle diameter \((\upmu \hbox {m})\)

E:

Effective modulus of elasticity \((\hbox {kN/mm}^{2})\)

\(\hbox {ff}_\mathrm{c }\) :

Flow function (\(-\))

\(\hbox {F}_\mathrm{G}\) :

Gravitational force (nN)

\(\hbox {F}_\mathrm{H}\) :

Adhesion force (in general) \((\upmu \hbox {N})\)

\(\hbox {F}_\mathrm{H0}\) :

Adhesion force of contact point (nN)

\(\hbox {F}_\mathrm{N}\) :

Normal force \((\upmu \hbox {N})\)

\(\hbox {F}_\mathrm{N,Y}\) :

Normal force at yield point (nN)

\(\hbox {h}_\mathrm{K}\) :

Displacement (nm)

\(\hbox {h}_\mathrm{K,Y}\) :

Displacement at yield point (nm)

\(\hbox {k}_\mathrm{N,el-pl}\) :

Elastic-plastic contact stiffness (N/m)

\({\upkappa }\) :

Contact consolidation coefficient (\(-\))

\({\upkappa }_\mathrm{A}\) :

Elastic-plastic contact surface ratio (\(-\))

\({\upkappa }_\mathrm{p}\) :

Plastic repulsion coefficient (\(-\))

\(\hbox {p}_\mathrm{f}\) :

Micro-yield strength (MPa)

\(\hbox {p}_\mathrm{VdW}\) :

van der Waals bond stress (MPa)

\(\hbox {r}_{1,2}\) :

Effective particle radius (nm)

\(\hbox {r}_\mathrm{K,el}\) :

Elastic contact radius (nm)

\(\hbox {W}_\mathrm{diss}\) :

Energy absorption or dissipation (Nm)

\(\uprho \) :

Density \((\hbox {g/cm}^{3})\)

\(\uprho _\mathrm{b }\) :

Bulk density \((\hbox {g/cm}^{3})\)

\(\upsigma \) :

Normal stress (Pa)

\(\upsigma _\mathrm{c}\) :

Uniaxial compressive strength (Pa)

\(\upsigma _{0}\) :

Isostatic tensile strength (Pa)

\(\upsigma _{1}\) :

Major principal stress (Pa)

\(\upsigma _\mathrm{pre}\) :

Preshear stress (Pa)

\(\uptau \) :

Shear stress (Pa)

\(\upvarphi _\mathrm{i}\) :

Angle of internal friction \((^\circ )\)

\(\upvarphi _\mathrm{e}\) :

Effective angle of internal friction \((^\circ )\)

\(\upvarphi _\mathrm{st}\) :

Stationary angle of internal friction \((^\circ )\)

References

  1. Tomas, J.: Adhesion of ultrafine particles—a micromechanical approach. Chem. Eng. Sci. 62, 1997–2010 (2007)

    Article  Google Scholar 

  2. Borho, K., Polke, R., Wintermantel, K., Schubert, H., Sommer, K.: Produkteigenschaften und Verfahrenstechnik. Chemie Ingenieur Technik 63, 792–808 (1991)

    Article  Google Scholar 

  3. Rumpf, H.: Grundlagen und Methoden des Granulierens. Chemie Ingenieur Technik 30, 144–158 (1958)

    Article  Google Scholar 

  4. Tomas, J.: Produkteigenschaften ultrafeiner Partikel—Mikromechanik, Fließ-und Kompressionsverhalten kohäsiver Pulver. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Technikwissenschaftliche Klasse 1(3), 1–46 (2009)

    Google Scholar 

  5. Tomas, J., Kleinschmidt, S.: Improvement of flowability of fine cohesive powders by flow additives. Chem. Eng. Technol. 32, 1470–1483 (2009)

    Article  Google Scholar 

  6. Tomas, J.: Assessment of mechanical properties of cohesive particulate solids—part 1: particle contact constitutive model. Part. Sci. Technol. 19, 95–110 (2001)

    Article  Google Scholar 

  7. Plueddemann, E.P.: Silane Coupling Agents. Plenum Press, New York (1991)

    Book  Google Scholar 

  8. Hertz, H.: Über die Berührung fester elastischer Körper. Journal Reine und Angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  9. Huber, M.T.: Zur Theorie der Berührung fester elastischer Körper. Annalen der Physik 14, 153–163 (1904)

    Article  ADS  MATH  Google Scholar 

  10. Lurje, A.I.: Räumliche Probleme der Elastizitätstheorie. Akademieverlag, Berlin (1963)

    MATH  Google Scholar 

  11. Sperling, G.: Eine Theorie der Haftung von Feststoffteilchen an Festkörpern. Dissertation, TH Karlsruhe (1964).

  12. Derjaguin, B.V.: Untersuchungen über die Reibung und Adhäsion, IV—Theorie des Anhaftens kleiner Teilchen. Kolloid Zeitschrift 69, 155–164 (1934)

    Article  Google Scholar 

  13. Derjaguin, B.V., Muller, V.M., Toporov, U.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  14. Dahneke, B.: The influence of flattening on the adhesion of particles. J. Colloid Interface Sci. 40, 1–13 (1972)

    Article  Google Scholar 

  15. Dahneke, B.: Further measurements of the bouncing of small latex spheres. J. Colloid Interface Sci. 51, 58–65 (1975)

    Article  Google Scholar 

  16. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  17. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)

    Article  ADS  Google Scholar 

  18. Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. A 453, 1277–1297 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Götzinger, M., Peukert, W.: Particle adhesion force distributions on rough surfaces. Langmuir 20, 5298–5303 (2004)

    Article  Google Scholar 

  20. Zhou, H., Peukert, W.: Modelling adhesion forces between deformable bodies by FEM and Hamaker summation. Langmuir 24, 1459–1468 (2008)

    Article  Google Scholar 

  21. Li, Q., Rudolph, V., Peukert, W.: London-van der Waals adhesiveness of rough particles. Powder Technol. 161, 248–255 (2006)

    Article  Google Scholar 

  22. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. (JETP) 2, 73–83 (1956)

    MathSciNet  Google Scholar 

  23. Hamaker, H.C.: The London—van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  ADS  Google Scholar 

  24. Tomas, J.: Assessment of mechanical properties of cohesive particulate solids—part 2: powder flow criteria. Part. Sci. Technol. 19, 111–129 (2001)

    Article  Google Scholar 

  25. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (1992)

    Google Scholar 

  26. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.A.M.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12, 15–47 (2010)

    Article  MATH  Google Scholar 

  27. Arkles, B.: Hydrophobicity and Hydrophilicity and Silane Surface Modification. Gelest Inc, Morrisville (2011)

    Google Scholar 

  28. Butt, H.-J., Graf, K., Kappl, M.: Physics and Chemistry of Interfaces. WILEY-VCH, Weinheim (2006)

    Google Scholar 

  29. Liu, X.M., Thomason, J.L., Jones, F.R.: The concentration of hydroxyl groups on glass surfaces and their effect on the structure of silane deposits. In: Silanes and Other Coupling Agents, Brill NV, Leiden (2009)

  30. Witucki, G.L.: A silane primer: chemistry and applications of alkoxy silanes. J. Coat. Technol. 65, 57–60 (1993)

    Google Scholar 

  31. Jradi, K., Daneault, C., Chabot, B.: Chemical surface modification of glass beads for the treatment of paper machine process waters. Thin Solid Films 519, 4239–4245 (2011)

    Article  ADS  Google Scholar 

  32. Hedge, N.D., Hirashima, H., Rao, A.V.: Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J. Porous Mater. 14, 165–171 (2007)

    Article  Google Scholar 

  33. KRÜSS GmbH: Krüss Advancing Surface Science. http://www.kruss.de/en/theory/measurements/contact-angle/contact-angle.html [Accessed 02 12 2012]

  34. Meichsner, G., Mezger, T., Schröder, J.: Lackeigenschaften Messen und Steuern. Vincentz Network GmbH & Co KG, Hannover (2003)

  35. Janssen, D., De Palma, R., Verlaak, S., Heremans, P., Dehaen, W.: Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 515, 1433–1438 (2006)

    Article  ADS  Google Scholar 

  36. Lemal, D.M.: Perspective on fluorocarbon chemistry. J. Org. Chem. 69, 1–11 (2004)

    Article  Google Scholar 

  37. Lindner, E., Ariast, E.: Surface free energy characteristics of polyfluorinated silane films. Langmuir 8, 1195–1198 (1992)

    Article  Google Scholar 

  38. Bradley, R.S.: The cohesive force between solid surfaces and the surface energy of solids. Philos. Mag. 13, 853–862 (1932)

    MATH  Google Scholar 

  39. Derjaguin, B.V., Abrikosova, I.I., Lifshitz, E.M.: Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. Chem. Soc. 10, 295–329 (1956)

    Article  Google Scholar 

  40. Black, W., de Jongh, J.G.V., Overbeek, J.T.G., Sparnaay, M.J.: Measurements of retarded van der Waals forces. Trans. Faraday Soc. 56, 1597–1608 (1960)

    Article  Google Scholar 

  41. Rouweler, G.C.J., Overbeek, J.T.G.: Dispersion forces between fused silica objects at distances between 25 and 350 nm. Trans. Faraday Soc. 67, 2117–2121 (1971)

    Article  Google Scholar 

  42. Israelachvili, J.N., Tabor, D.: The measurement of the van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond. A(331), 19–38 (1972)

    Article  ADS  Google Scholar 

  43. Israelachvili, J.N., Tabor, D.: van der Waals forces: theory and experiment. In: Danielli, J.F., Rosenberg, M.D., Cadenhead, D.A. (eds.) Progress in surface and membrane science vol. 7, pp. 1–55. Academic Press, New York (1973)

  44. Israelachvili, J.N., Adams, G.E.: Measurements of the forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. 1(74), 975–1001 (1978)

    Article  Google Scholar 

  45. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim, L., Butt, H.-J.: Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62, 2843–2864 (2007)

    Article  Google Scholar 

  46. Binning, G., Quate, C.F., Gerber, C.: Atomic force microscopy. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  Google Scholar 

  47. Meyer, E., Heinzelmann, H., Grötter, P., Jung, T., Hidber, H.R., Rudin, H., Guntherodt, H.J.: Atomic force microscopy for the study of tribology and adhesion. Thin Solid Films 181, 527–544 (1989)

    Article  ADS  Google Scholar 

  48. Weisenhorn, A.L., Hansma, P.K., Albrecht, T.R., Quate, C.F.: Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 2651–2653 (1989)

    Article  ADS  Google Scholar 

  49. Butt, H.-J., Jaschke, M., Ducker, W.A.: Measuring surface forces in aqueous solution with the atomic force microscope. Bioelectrochem. Bioenergy 381, 91–201 (1995)

    Google Scholar 

  50. Capella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)

    Article  ADS  Google Scholar 

  51. Kappl, M., Butt, H.-J.: The colloidal probe technique and its application to adhesion force measurements. Part. Part. Syst. Charact. 19, 129–143 (2002)

    Article  Google Scholar 

  52. Butt, H.-J., Capella, B., Kappl, M.: Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005)

    Google Scholar 

  53. Fisher-Cripps, A.C.: Nanoindentation. Springer, New York (2011)

  54. Fuchs, R., Meyer, J., Staedler, T., Jiang, X.: Sliding and rolling of individual micrometre sized glass particles on rough silicon surfaces. Tribology 7(2), 103–107 (2013)

    Google Scholar 

  55. Hysitron. Inc.: Tip Selection Guide. http://hysitron.com/LinkClick.aspx?fileticket=bcq5arPC_GE%3d&tabid=429 [Accessed 25 07 2013]

  56. Schulze, D.: Schüttgutmesstechnik. http://www.dietmar-schulze.de/leaflxse.pdf [Accessed 01 06 2012]

  57. Hintz, W., Antonyuk, S., Schubert, W., Ebenau, B., Haack, A., Tomas, J.: Determination of physical properties of fine particles, nanoparticles and particle beds. In: Tsotsas, E. (ed.) Modern Drying Technology: Experimental Techniques, 2, Wiley-VCH, Weinheim (2009)

  58. Tomas, J.: Fundamentals of cohesive powder consolidation and flow. Granul. Matter 6, 75–86 (2004)

    Article  MATH  Google Scholar 

  59. Jenike, A.W.: Storage and Flow of Solids. Engineering Experiment Station, vol. 123, University of Utah, Utah (1964)

  60. Tomas, J.: Product design of cohesive powders mechanical properties, compression and flow behavior. Chem. Eng. Technol. 27, 605–618 (2004)

    Article  Google Scholar 

  61. Schulze, D.: Zur Fließfähigkeit von Schüttgütern—Definition und Messverfahren. Chemie Ingenieur Technik 67(1), 60–68 (1995)

    Article  Google Scholar 

  62. Tomas, J., Kleinschmidt, S.: Verbesserung der Fließfähigkeit feiner kohäsiver Pulver durch nanoskalige Fließhilfsmittel. Chemie Ingenieur Technik 81, 717–733 (2009)

    Article  Google Scholar 

  63. Czichos, H., Hennecke, M.: Hütte: Das Ingenieurwissen. Springer, Berlin (2008)

    Google Scholar 

  64. Antonyuk, S., Tomas, J., Heinrich, S., Mörl, L.: Breakage behaviour of spherical granulates by compression. Chem. Eng. Sci. 60, 4031–4044 (2005)

    Article  Google Scholar 

  65. Müller, P., Tomas, J.: Compression behavior of moist spherical zeolite 4A granules. Chem. Eng. Technol. 35(9), 1677–1684 (2012)

    Article  Google Scholar 

  66. Müller, P., Seeger, M., Tomas, J.: Compression and breakage behavior of \(\gamma -\text{ Al }_{2}\text{ O }_{3}\) granules. Powder Technol. 237, 125–133 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of the German Research Foundation (DFG) through the priority program ‘PiKo – Particles in Contact’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Mader-Arndt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mader-Arndt, K., Kutelova, Z., Fuchs, R. et al. Single particle contact versus particle packing behavior: model based analysis of chemically modified glass particles. Granular Matter 16, 359–375 (2014). https://doi.org/10.1007/s10035-013-0478-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0478-9

Keywords

Navigation