Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Granular Matter
  3. Article

Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM

  • Original Paper
  • Open access
  • Published: 05 May 2012
  • Volume 14, pages 457–468, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Granular Matter Aims and scope Submit manuscript
Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM
Download PDF
  • J. Kozicki1,
  • J. Tejchman1 &
  • Z. Mróz2 
  • 2246 Accesses

  • 77 Citations

  • Explore all metrics

Abstract

A quasi-static homogeneous drained triaxial compression test on cohesionless sand under constant lateral pressure was simulated using a three-dimensional DEM model. Grain roughness was modelled by means of symmetric clusters composed of rigid spheres imitating irregular particle shapes. The effect of grain roughness on shear strength, dilatancy, kinetic, elastic and dissipated energies was numerically analyzed. Some numerical results were compared with available experimental results.

Article PDF

Download to read the full article text

Similar content being viewed by others

Investigation on the Rate-Dependent Behavior of Sands via DEM

Chapter © 2017

Comparative 3D DEM simulations of sand–structure interfaces with similarly shaped clumps versus spheres with contact moments

Article Open access 15 June 2021

Influence of intermediate principal stress and rolling resistance on the shearing response of sand: a micromechanical investigation

Article 24 June 2024

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Soil Physics
  • Soft and Granular Matter
  • Elasticity
  • Mechanical Properties of Materials
  • Soil and Rock Mechanics
  • Solid Mechanics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Alonso-Marroquin F., Vardoulakis I., Herrmann H., Weatherley D., Mora P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  2. Alonso-Marroquin F., Mühlhaus H.B., Herrmann H.: Micromechanical investigation of granular ratcheting using a discrete model of polygonal particles. Particuology 6, 390–403 (2008)

    Article  Google Scholar 

  3. Alonso-Marroquin F., Wang Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009)

    Article  Google Scholar 

  4. Bardet J.P.: Introduction to computational granular mechanics. In: Cambou, B. (ed) Behaviour of Granular Materials, CISM 385, pp. 99–171. Springer, Udine (1998)

    Google Scholar 

  5. Belheine N., Plassiard J.P., Donze F.V., Darve F., Seridi A.: Numerical simulations of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009)

    Article  Google Scholar 

  6. Bi Z., Sun Q., Jin F., Zhang M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13, 503–510 (2011)

    Article  Google Scholar 

  7. Brinkgreve, R.: Geomaterial models and numerical analysis of softening. Dissertation, Delft University, pp. 1–153. (1994)

  8. Collins I.F.: The concept of stored plastic work or frozen elastic energy in soil mechanics. Geotechnique 55, 373–382 (2005)

    Article  Google Scholar 

  9. Collins I.F., Houlsby G.T.: Application of thermomechanical principles to the modelling of geotechnical materials. Proc. R. Soc. Lond. Ser. A 453, 1975–2001 (1997)

    Article  ADS  MATH  Google Scholar 

  10. Cundall P.A., Strack O.D.L.: The distinct numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  11. Cundall P.A., Hart R.: Numerical modeling of discontinua. J. Eng. Comput. 9, 101–113 (1992)

    Article  Google Scholar 

  12. Ferellec J.F., McDowell G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12, 459–467 (2010)

    Article  Google Scholar 

  13. Gudehus G., Nübel K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)

    Article  Google Scholar 

  14. Herrmann H.J., Luding S.: Modeling granular media on the computer. Continuum Mech. Thermodyn. 10(4), 189–231 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Hertz H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1882)

    MATH  Google Scholar 

  16. Iwashita K., Oda M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  17. Jerier J.F., Richefeu V., Imbault D., Donze F.V.: Packing spherical discrete elements for large scale simulations. Comput. Methods Appl. Mech. Eng. 199, 1668–1676 (2010)

    Article  ADS  MATH  Google Scholar 

  18. Jiang M.J., Yu H.S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005)

    Article  Google Scholar 

  19. Ketterhagen W.R., Amende M.T., Hancock B.C.: Process modeling in the pharmaceutical industry using the discrete element method. Pharm. Res. Dev. 98, 442–470 (2009)

    Google Scholar 

  20. Kolymbas D., Wu W.: Recent results of triaxial tests with granular materials. Powder Technol. 60(2), 99–119 (1990)

    Article  Google Scholar 

  21. Kozicki J., Donze F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)

    Article  ADS  MATH  Google Scholar 

  22. Kozicki J., Donze F.V.: Yade-open DEM: an open-source software using a discrete element merhod to simulate granular material. Eng. Comput. 26(7), 786–805 (2009)

    Article  Google Scholar 

  23. Kruyt N.P., Rothenburg L.: Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J. Stat. Mech. P07021, 1–10 (2006)

    Google Scholar 

  24. Luding S.: Cohesive, frictional powders: contact models for tension. Granul. Matter. 10(4), 235–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maeda K., Sakai H., Kondo A., Yamaguchi T., Fukuma M., Nukudani E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12, 499–505 (2010)

    Article  Google Scholar 

  26. Matsushima T., Chang C.S.: Quantitative evolution of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter 13, 269–276 (2011)

    Article  Google Scholar 

  27. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans. ASME 75, 327–344 (1953)

    MathSciNet  Google Scholar 

  28. Mohamed A., Gutierrez M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granul. Matter 12(5), 527–541 (2010)

    Article  Google Scholar 

  29. Ng T.T.: Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. Int. J. Numer. Anal. Methods Geomech. 33, 511–552 (2009)

    Article  Google Scholar 

  30. Oda M., Kazama H.: Micro-structure of shear band and its relation to the mechanism of dilatancy and failure of granular soils. Geotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  31. Ord A., Hibbs B., Regenauer-Lieb K.: Shear band emergence in granular materials—a numerical study. Int. J. Numer. Anal. Methods Geomech. 31, 373–393 (2007)

    Article  MATH  Google Scholar 

  32. Pena A.A., Lizcano A., Alonso-Mattoquin F., Herrmann H.J.: Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Methods Geomech. 32, 143–160 (2008)

    Article  Google Scholar 

  33. Rojek J.: Discrete element modelling of rock cutting. Comput. Methods Mater. Sci. 7(2), 224–230 (2007)

    Google Scholar 

  34. Rothenburg L., Bathurst R.J.: Micromechanical features of granular materials with planar elliptical particles. Geotechnique 42, 79–7995 (1992)

    Article  Google Scholar 

  35. Salot C., Gotteland P., Villard P.: Influence of relative density on granular materials behaviour: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)

    Article  Google Scholar 

  36. Šmilauer, V., Chareyre, B.: Yade DEM Formulation. Manual (2011)

  37. Tillemans H.J., Herrmann H.J.: Simulating deformations of granular solids under shear. Phys. A 217(3–4), 261–288 (1995)

    Google Scholar 

  38. Tejchman J., Wu W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)

    Article  MATH  Google Scholar 

  39. Tejchman J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput. Geotech. 31(8), 595–611 (2004)

    Article  Google Scholar 

  40. Tejchman J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R.I. (eds) Springer Series in Geomechanics and Geoengineering, Springer, Berlin (2008)

    Google Scholar 

  41. Tejchman J., Gorski J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Struct. 45(6), 1546–1569 (2008)

    Article  MATH  Google Scholar 

  42. Thornton C., Yin K.K., Adams M.J.: Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D 29, 424–435 (1996)

    Article  ADS  Google Scholar 

  43. Widulinski L., Kozicki J., Tejchman J.: Numerical simulation of a triaxial test with sand using DEM. Arch. Hydro Eng. Environ. Mech. 56(3–4), 3–26 (2009)

    Google Scholar 

  44. Widulinski L., Tejchman J., Kozicki J., Leśniewska D.: Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int. J. Solids Struct. 48(7–8), 1191–1209 (2011)

    Article  MATH  Google Scholar 

  45. Wu, W.: Hypoplastizität als Mathematisches Modell zum Mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe (1992)

  46. Zhao, Z., Liu, C.S.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E 78(031307), (2008)

  47. Zhu H.P., Zhou Z.Y., Yang R.Y., Yu A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

  48. Yan Y., Ji S.: Discrete element modelling of direct shear tests for a granular material. Int. J. Numer. Anal. Methods Geomech. 34, 978–990 (2010)

    Google Scholar 

Download references

Acknowledgments

Scientific work has been carried out by the first two authors as a part of the Project: “Innovative resources and effective methods of safety improvement and durability of buildings and transport infrastructure in the sustainable development” financed by the European Union (POIG.01.01.02-10-106/09-01).

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland

    J. Kozicki & J. Tejchman

  2. Polish Academy of Sciences, Institute of Fundamental Technological Research, Warsaw, Poland

    Z. Mróz

Authors
  1. J. Kozicki
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. J. Tejchman
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Z. Mróz
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kozicki, J., Tejchman, J. & Mróz, Z. Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter 14, 457–468 (2012). https://doi.org/10.1007/s10035-012-0352-1

Download citation

  • Received: 17 December 2011

  • Published: 05 May 2012

  • Issue Date: July 2012

  • DOI: https://doi.org/10.1007/s10035-012-0352-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Triaxial test
  • Granular material
  • Discrete element method
  • Grain roughness
  • Energy
  • Dissipation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature