Skip to main content
Log in

Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Based on a detailed analysis of DEM simulation data,this paper provides new insights into the effects of boundary surface topography on the mobilized stress ratio and stress-displacement behavior in the interface shear test and the direct shear test. The soil mechanics observed in the two types of tests are unified under a novel perspective of boundary-induced soil behavior. It is shown that the principal direction of the contact force anisotropy developed at the soil-surface boundary has an exclusive control over the peak stress ratio measured both at the boundary and inside the sampling window. However, a subtle change in the roles of the principal direction and the magnitude of contact force anisotropy is found as the contact force chains extend from the surface into the interphase soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM D5321-02: Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method. ASTM, West Conshohocken, PA, USA

  2. ASTM D3080-04: Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM, West Conshohocken, PA, USA

  3. Bathurst R.J., Rothenburg L.: Observation on stress-force-fabric relationships in idealized granular materials. Mech. Mat. 9, 65–80 (1990)

    Article  Google Scholar 

  4. Dove J.E., Jarrett J.B.: Behavior of dilative sand interface in a geotribology framework. J. Geotech. Geoenviron. Eng. 12(1), 25–37 (2002)

    Article  Google Scholar 

  5. Dove J.E., Bents D.D., Wang J., Gao B.: Particle-scale surface interactions of non-dilative interface systems. Geotext. Geomembr. 24(3), 156–168 (2006)

    Article  Google Scholar 

  6. Jacobson D.E., Valdes J.R., Evans T.M.: A numerical view into direct shear specimen size effects. Geotech. Test. J. 30(6), 512–516 (2007)

    Google Scholar 

  7. Jewell R.A., Wroth C.P.: Direct shear tests on reinforced sand. Géotechnique 37(1), 53–68 (1987)

    Article  Google Scholar 

  8. Johnson, M.L.: Characterization of geotechnical surfaces by stylus profilometry, p. 504. Master of Science Thesis, Georgia Institute of Technology (2000)

  9. Kishida H., Uesugi M.: Tests of interface between sand and steel in the simple shear apparatus. Géotechnique 37(1), 45–52 (1987)

    Article  Google Scholar 

  10. Lings M.L., Dietz M.S.: An improved direct shear apparatus for sand. Géotechnique 54(4), 245–256 (2004)

    Article  Google Scholar 

  11. Liu C.H., Nagel S.R., Schecter S.N., Coppersmith S.N., Majumdar S., Narayan O., Witten T.A.: Force fluctuations in bead packs. Science 269(513), 513–515 (1995)

    Article  ADS  Google Scholar 

  12. Potts D.M., Dounias G.T., Vaughan P.R.: Finite element analysis of the direct shear box test. Géotechnique 37(1), 11–23 (1987)

    Article  Google Scholar 

  13. Radjai F., Jean M., Moreau J.-J., Roux S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274–277 (1996)

    Article  ADS  Google Scholar 

  14. Tejchman J., Wu W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Meth. Geomech. 19, 513–536 (1995)

    Article  Google Scholar 

  15. Uesugi M., Kishida H.: Influential factors of friction between steel and dry sands. Soils Found. 26(2), 33–46 (1986)

    Article  Google Scholar 

  16. Wang, J.: Micromechanics of granular media: a fundamental study of interphase systems. Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia, USA (2006)

  17. Wang J., Dove J.E., Gutierrez M.S.: Determining particulate-solid interphase strength using shear-induced anisotropy. Granul. Matter 9(3–4), 231–240 (2007)

    Article  MATH  Google Scholar 

  18. Wang J., Dove J.E., Gutierrez M.S.: Anisotropy-based failure criterion for an interphase system. J. Geotech. Geoenviron. Eng. ASCE 133(5), 599–608 (2007)

    Article  Google Scholar 

  19. Wang J., Dove J.E., Gutierrez M.S.: Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 57(6), 513–526 (2007)

    Article  Google Scholar 

  20. Wang J., Gutierrez M.S., Dove J.E.: Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int. J. Numer. Anal. Meth. Geomech. 31(12), 1349–1366 (2007)

    Article  MATH  Google Scholar 

  21. Wang J., Gutierrez M.S.: Modeling of scale effects on the micromechanics of granular media under direct shear condition. In: Nakagawa, M., Luding, S. (eds) Powders and Grains 2009, pp. 365–368. Golden, Colorado (2009)

    Google Scholar 

  22. Wang J., Gutierrez M.S.: Discrete element simulations of direct shear specimen scale effects. Géotechnique 60(5), 395–409 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Jiang, M. Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granular Matter 13, 631–641 (2011). https://doi.org/10.1007/s10035-011-0275-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0275-2

Keywords

Navigation