Skip to main content
Log in

On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The finite element method is used to investigate the validity of the Hertz model for normal contact under conditions that violate some of the assumptions on which the Hertz model was derived. The conditions investigated are: frictional contact, non-flat contact surface and large strains. The investigations were performed for the case of two elastic spheres in contact as well as that of a sphere in contact with a flat plate. The existence of friction for normal contact does not appear to lead to any erroneous predictions of the force-deflection relationship by the Hertz model. The Hertz model also does not appear to predict significant errors when the contact surface is not flat. However, large strains were found to cause important prediction errors by the Hertz model. Calibration curves for the corrections on the Hertz model are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hertz, H.: Über die berührung fester elastischer körper (on the contact of elastic solids). J. Reine Angewandte Math. 94, 156–71. (English translation in Miscellaneous Papers by Hertz, H. (ed.) Jones and Schott, London, Macmillan, 1896) (1882)

  2. Fung Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  3. Johnson K.L. (1985). Contact Mechanics, 2nd ed. Cambridge University Press, New York

    MATH  Google Scholar 

  4. Love A.E.H. (1952). A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, New York

    Google Scholar 

  5. Timoshenko S. and Goodier J.N. (1951). Theory of Elasticity, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  6. Alder B.J. and Wainwright T.E. (1959). Studies in molecular dynamics. I. General method. J. Chem. Phys. 31(2): 459–466

    Article  ADS  MathSciNet  Google Scholar 

  7. Rapaport D.C. (2004). The Art of Molecular Dynamics, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Cundall P.A. and Strack O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique 29(1): 47–65

    Article  Google Scholar 

  9. Feda, J.: Mechanics of Particulate Materials. Development of Geotechnical Engineering, vol. 30. Elsevier, Amsterdam (1982)

  10. Kandaurov, I.I.: Mechanics of granular media and its application in civil engineering (Translated from Russian and edited by R.B. Zeidler). Geotechnika 6. Balkema, Rotterdam (1991)

  11. Cleary P.W. (2000). DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills. Powder Technol. 109: 83–104

    Article  Google Scholar 

  12. Couroyer C., Ning Z. and Ghadiri M. (2000). Distinct element analysis of bulk crushing: effect of particle properties and loading rate. Powder Technol. 109: 241–254

    Article  Google Scholar 

  13. Matchett A.J., Yanagida T., Okudaira Y. and Koboyashi S. (2000). Vibrating powder beds: a comparison of experimental and Distinct Element Method simulated data. Powder Technol. 107(1–2): 13–30

    Article  Google Scholar 

  14. Martin C.L., Bouvard D. and Shima S. (2003). Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids 51: 667–693

    Article  MATH  ADS  Google Scholar 

  15. Tijskens E., Ramon H. and De Baerdemaeker J. (2003). Discrete element modelling for process simulation in agriculture. J. Sound Vibrat. 266(3): 493–514

    Article  ADS  Google Scholar 

  16. Abbaspour-fard, H., Favier, J.F.: Modeling the dynamic behaviour of axi-symmetrical fruits using the Discrete Element Method.In: Presentation at the 1999 ASAE/CSAE-SCGR Annual International Meeting, Toronto. ASAE Paper No. 996027 (1999)

  17. Van Zeebroeck, M.: The discrete element method (DEM) to simulate fruit impact damage during transport and handling. PhD Thesis no. 643. Faculteit Bio-ingenieurswetenschappen, Katholieke Universiteit Leuven (2005)

  18. Van Zeebroeck M., Tijskens E., Dintwa E., Kafashan J., Loodts J., De Baerdemaeker J. and Ramon H. (2006). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples. Postharvest Biol. Technol. 41: 85–91

    Article  Google Scholar 

  19. Van Zeebroeck M., Tijskens E., Dintwa E., Kafashan J., Loodts J., De Baerdemaeker J. and Ramon H. (2006). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Case study of vibration damage during apple bulk transport. Postharvest Biol. Technol. 41: 92–100

    Article  Google Scholar 

  20. Van Liedekerke P., Tijskens E., Dintwa E., Anthonis J. and Ramon H. (2006). A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations. Powder Technol. 170(2): 71–85

    Article  Google Scholar 

  21. Raji, A.O., Favier, J.F.: Discrete element modelling of deformation in particulate agricultural materials under bulk compressive loading. In: Proceedings of the International conference on agricultural engineering (Eur AgEng 98), Oslo. Paper No. 98-F-045 (1998)

  22. Raji A.O. and Favier J.F. (2004). Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation. J. Food Eng. 64: 359–371

    Article  Google Scholar 

  23. Raji A.O. and Favier J.F. (2004). Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. II: Compressing of oilseeds. J. Food Eng. 64: 373–380

    Article  Google Scholar 

  24. Sakaguchi E., Suzuki M., Favier J.F. and Kawakami S. (2001). Numerical simulation of the shaking separation of paddy and brown rice using the discrete element method. J. Agric. Eng Res. 79(3): 307–315

    Article  Google Scholar 

  25. Kolymbus, D.: Features of soil behaviour and their mathematical modeling. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains. A.A. Balkema, Leiden (2005)

  26. Lubachevsky B.D. (1991). How to simulate billiards and similar systems. J. Comp. Phys. 94(2): 255–283

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Vu-Quoc L., Zhang X. and Lesburg L. (2001). Normal and tangential force–displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids Struct. 38: 6455–6489

    Article  MATH  Google Scholar 

  28. Fischer-Cripps A.C. (1999). The Hertzian contact surface. J. Mater. Sci. 34: 129–137

    Article  Google Scholar 

  29. Vu-Quoc L., Xhang X. and Lesburg L. (2000). A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. ASME J. Appl. Mech. 67(2): 363–371

    Article  MATH  Google Scholar 

  30. Vu-Quoc L. and Xhang X. (1999). An elastoplastic contact-force model in the normal direction: Displacement-driven version. Proc. R. Soc. Lond. A 455: 4013–4044

    MATH  ADS  Google Scholar 

  31. Xhang X. and Vu-Quoc L. (2002). A method to extract the mechanical properties of particles in collision based on a new elasto-plastic normal force–displacement model. Mech. Mater. 34: 779–794

    Article  Google Scholar 

  32. Zhang X. and Vu-Quoc L. (2002). Modeling coefficient of restitution as a function of impact velocity. Int. J. Impact Eng. 27(3): 317–341

    Article  Google Scholar 

  33. Vu-Quoc L., Lesburg L. and Zhang X. (2004). An accurate tangential force–displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196(1): 298–326

    Article  MATH  ADS  Google Scholar 

  34. Yan W. and Fischer F.D. (2000). Applicability of the Hertz contact theory to rail-wheel contact problems. Arch. Appl. Mech. 70: 255–268

    Article  MATH  Google Scholar 

  35. Hay J.L. and Wolff P.J. (2001). Small correction required when applying the Hertzian contact model to instrumented indentation data. J. Mater. Res. 16(5): 1280–1286

    Article  ADS  Google Scholar 

  36. Chandrasekaran N., Haisler W.E. and Goforth R.E. (1987). Finite element analysis of Hertz contact problem with friction. Finite Elements Anal. Des. 3: 39–56

    Article  MATH  Google Scholar 

  37. Mohsenin N.N. (1977). Characterization and failure in solid foods with particular reference to fruits and vegetables. J. Texture Stud. 8: 169–193

    Article  Google Scholar 

  38. Lichtensteiger M.J., Holmes R.G., Hamdy M.Y. and Blaisdell J.L. (1988). Impact parameters of spherical viscoelastic objects and tomatoes. Trans. ASAE 31(2): 595

    Google Scholar 

  39. Hyde, G.M., Bajema, R.W., Zhang, W.: Measurement of impact damage thresholds in fruits and vegetables. In: Proceedings on the 4th International Symposium on Fruit, Nut and Vegetable production Engineering, Valencia-Zaragoza, Spain, March 22–26. Ministerio de Agricultura, Pesca y Alimentacion Instituto Nacional de Investigacion y Technologia Agraria y Alimentaria y Inia, Madrid (1993)

  40. Holt J.E., Schoorl D. and Lucas C. (1981). Prediction of bruising in impacted multilayered apple packs. Trans. ASAE 24: 242–247

    Google Scholar 

  41. Hammerle J.R. and Mohsenin N.N. (1966). Some dynamic aspects of fruit impacting hard and soft materials. Trans. ASAE 9(4): 484–488

    Google Scholar 

  42. Fluck R.C. and Ahmed E.M. (1973). Impact testing of fruits and vegetables. Trans. ASAE 16(4): 660–666

    Google Scholar 

  43. Chen, P., Tang, S., Chen, S.: Instrument for testing the response of fruits to impact. ASAE paper No. 85-3537 (1985)

  44. Chen P. and Yazdani R. (1991). Prediction of apple bruising due to impact on different surfaces. Trans ASAE 34: 956–961

    Google Scholar 

  45. Bajema R.W. and Hyde G.M. (1998). Instrumented pendulum for impact characterization of whole fruit and vegetable specimens. Trans. ASAE 41(5): 1399–1405

    Google Scholar 

  46. Mohsenin N.N., Jindal V.K. and Manor A.N. (1978). Mechanics of impact of a falling fruit on a cushioned surface. Trans. ASAE 21(3): 594–600

    Google Scholar 

  47. Ragni L. and Berardinelli A. (2001). Mechanical behaviour of apples and damage during sorting and packaging. J. Agric. Eng Res. 78(3): 273–279

    Article  Google Scholar 

  48. Van Zeebroeck M., Tijskens E., Van Liedekerke P., Deli V., De Baerdemaeker J. and Ramon H. (2003). Determination of the dynamical behaviour of biological materials during impact using a pendulum device. J. Sound Vibrat. 266(3): 465–480

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Dintwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dintwa, E., Tijskens, E. & Ramon, H. On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres. Granular Matter 10, 209–221 (2008). https://doi.org/10.1007/s10035-007-0078-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0078-7

Keywords

Navigation