Skip to main content
Log in

Pathways of the preperitoneal plane: from the “fatty triangle” in Rives to the “fatty trident" in extended retromuscular abdominal wall reconstruction. A tribute to Prof. Schumpelick.

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Purpose

Extended retromuscular dissection performed for abdominal wall reconstruction in complex abdominal wall repair has progressively exposed the anatomy between the peritoneal layer and abdominal wall muscles. This study aimed to assess the morphology and distribution of preperitoneal fat in a cadaveric model and its influence in retromuscular preperitoneal dissections.

Methods

Thirty frozen cadaver torsos were dissected by posterior component separation. The shape of the preperitoneal fat was identified, and the dimensions and more significant distances were calculated.

Results

The results showed that the preperitoneal fat resembles a trident, exists along the midline under the linea alba, and expands in the epigastric area into a rhomboid shape. The fatty triangle was found to be a part of this rhomboid. Caudally, the midline preperitoneal fat widened under the arcuate line to reach the Retzius space. Laterally, the Bogros space communicated the root of the trident with the paracolic gutters, Toldt’s fascia, and pararenal fats, forming the lateral prong of the trident. The peritoneum not covered by the preperitoneal fatty trident was easy to break. Three pathways could be tracked following the distribution of this fat that facilitated the dissection of the preperitoneal space to prepare the landing zone of the meshes in hernia repair.

Conclusion

The concept of preperitoneal fatty trident may be of practical assistance to perform various hernia procedures, from the simple ventral hernia repair to the more complex preperitoneal ventral repair or posterior component separation techniques. The consistency of this layer allows us to follow three specific pathways to find our plane between the peritoneum and muscle layers to extend the preperitoneal dissection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Novitsky YW, Porter JR, Rucho ZC, Getz SB, Pratt BL, Kercher KW et al (2006) Open preperitoneal retrofascial mesh repair for multiply recurrent ventral incisional hernias. J Am Coll Surg 203:283–289. https://doi.org/10.1016/j.jamcollsurg.2006.05.297

    Article  PubMed  Google Scholar 

  2. Heniford BT, Ross SW, Wormer BA, Walters AL, Lincourt AE, Colavita PD et al (2020) Preperitoneal ventral hernia repair: a decade long prospective observational study with analysis of 1023 patient outcomes. Ann Surg 271:364–374. https://doi.org/10.1097/sla.0000000000002966

    Article  PubMed  Google Scholar 

  3. Novitsky YW, Elliott HL, Orenstein SB, Rosen MJ (2012) Transversus abdominis muscle release: a novel approach to posterior component separation during complex abdominal wall reconstruction. Am J Surg 204:709–716. https://doi.org/10.1016/j.amjsurg.2012.02.008

    Article  PubMed  Google Scholar 

  4. Novitsky YW, Fayezizadeh M, Majumder A, Neupane R, Elliott HL, Orenstein SB (2016) Outcomes of posterior component separation with transversus abdominis muscle release and synthetic mesh sublay reinforcement. Ann Surg 264:226–232. https://doi.org/10.1097/sla.0000000000001673

    Article  PubMed  Google Scholar 

  5. Conze J, Prescher A, Klinge U, Saklak M, Schumpelick V (2004) Pitfalls in retromuscular mesh repair for incisional hernia: the importance of the “fatty triangle.” Hernia 8:255–259. https://doi.org/10.1007/s10029-004-0235-4

    Article  CAS  PubMed  Google Scholar 

  6. San Miguel-Méndez C, López-Monclús J, Munoz-Rodriguez J, de Lersundi Á, Artes-Caselles M, Blázquez Hernando LA et al (2021) Stepwise transversus abdominis muscle release for the treatment of complex bilateral subcostal incisional hernias. Surgery 170:1112–1119. https://doi.org/10.1016/j.surg.2021.04.007

    Article  PubMed  Google Scholar 

  7. Tastaldi L, Blatnik JA, Krpata DM, Petro CC, Fafaj A, Alkhatib H et al (2019) Posterior component separation with transversus abdominis release (TAR) for repair of complex incisional hernias after orthotopic liver transplantation. Hernia 23:363–373. https://doi.org/10.1007/s10029-019-01918-8

    Article  CAS  PubMed  Google Scholar 

  8. Renard Y, de Mestier L, Cagniet A, Demichel N, Marchand C, Meffert JL et al (2017) Open retromuscular large mesh reconstruction of lumbar incisional hernias including the atrophic muscular area. Hernia 21:341–349. https://doi.org/10.1007/s10029-016-1570-y

    Article  CAS  PubMed  Google Scholar 

  9. Petro CC, Orenstein SB, Criss CN, Sanchez EQ, Rosen MJ, Woodside KJ et al (2015) Transversus abdominis muscle release for repair of complex incisional hernias in kidney transplant recipients. Am J Surg 210:334–339. https://doi.org/10.1016/j.amjsurg.2014.08.043

    Article  PubMed  Google Scholar 

  10. Blázquez-Hernando LA, López-Monclús J, Robín-Del-Valle-Lersundi A, Melero Montes D, San-Miguel-Méndez C, García-Ureña MA (2020) Evaluation of a workshop to teach a new surgical technique in abdominal wall reconstruction. Hernia 24:645–650. https://doi.org/10.1007/s10029-019-02041-4

    Article  PubMed  Google Scholar 

  11. Bendavid R (1992) The space of Bogros and the deep inguinal venous circulation. Surg Gynecol Obstet 174:355–358

    CAS  PubMed  Google Scholar 

  12. Robin-Lersundi A, Blazquez Hernando L, López-Monclús J, Cruz-Cidoncha A, San-Miguel-Méndez C, Jimenez-Cubedo E et al (2018) How we do it: down to up posterior components separation. Langenbecks Arch Surg 403:539–546. https://doi.org/10.1007/s00423-018-1655-4

    Article  PubMed  Google Scholar 

  13. Garcia-Urena M, Lopez-Monclus J. Madrid Posterior Componente Separation in a cadaver lab model. Available at: https://youtu.be/ifHUWVRUfeE. Accessed 28 Dec 2021

  14. Runkel M, Kuvendjiska J, Marjanovic G, Fichtner-Feigl S, Diener MK (2021) Ligamentum teres augmentation (LTA) for hiatal hernia repair after minimally invasive esophageal resection: a new use for an old structure. Langenbecks Arch Surg 406:2521–2525. https://doi.org/10.1007/s00423-021-02284-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Runkel A, Scheffel O, Marjanovic G, Runkel N (2020) The new interest of bariatric surgeons in the old ligamentum teres hepatis. Obes Surg 30:4592–4598. https://doi.org/10.1007/s11695-020-04918-1

    Article  PubMed  Google Scholar 

  16. Arregui M (1997) Surgical anatomy of the pre peritoneal fasciae and posterior transversalis fasciae in the inguinal region. Hernia 1:101–110

    Article  Google Scholar 

  17. Hureau J (2001) The space of Bogros and the interparietoperitoneal spaces. In: Bendavid RAJ, Arregui ME, Flament JB, Phillips EH (eds) Abdominal wall hernias: principles and management. Springer, New York, pp 101–106

    Chapter  Google Scholar 

  18. Hureau J, Agossou-Voyeme AK, Germain M, Pradel J (1991) The posterior interparietoperitoneal spaces or retroperitoneal spaces. 1: Normal topographic anatomy. J Radiol 72:101–116

    CAS  PubMed  Google Scholar 

  19. Read RC (2011) Crucial steps in the evolution of the preperitoneal approaches to the groin: an historical review. Hernia 15:1–5. https://doi.org/10.1007/s10029-010-0739-z

    Article  CAS  PubMed  Google Scholar 

  20. Mirilas P, Skandalakis JE (2010) Surgical anatomy of the retroperitoneal spaces, part V: surgical applications and complications. Am Surg 76:358–364

    Article  PubMed  Google Scholar 

  21. Parker SG, Halligan S, Liang MK, Muysoms FE, Adrales GL, Boutall A et al (2020) International classification of abdominal wall planes (ICAP) to describe mesh insertion for ventral hernia repair. Br J Surg 107:209–217. https://doi.org/10.1002/bjs.11400

    Article  CAS  PubMed  Google Scholar 

  22. Bogros A. Essai sur l’anatomie chirurgical de la region iliac et description d’un nouveau procede pour faire la ligature des arteres epigastrique et iliaque externe. de l’imprimerie de Didot le Jeune, imprimeur de la Faculte de Medicine, rue des Macons, Sorbonne no. 13: Paris; 1823

  23. Testut L, Latarjet A (1948) Traité d’anatomie humaine, 9 édn. Doin, Paris

    Google Scholar 

  24. Mirilas P, Colborn GL, McClusky DA, Skandalakis LJ, Skandalakis PN, Skandalakis JE (2005) The history of anatomy and surgery of the preperitoneal space. Arch Surg 140:90–94. https://doi.org/10.1001/archsurg.140.1.90

    Article  PubMed  Google Scholar 

  25. Rouviáere H (1991) Anatomie humaine: descriptive, topographique et fonctionnelle, vol 13. Masson, Paris

    Google Scholar 

  26. Belyansky I, Daes J, Radu VG, Balasubramanian R, Reza Zahiri H, Weltz AS et al (2018) A novel approach using the enhanced-view totally extraperitoneal (eTEP) technique for laparoscopic retromuscular hernia repair. Surg Endosc 32:1525–1532. https://doi.org/10.1007/s00464-017-5840-2

    Article  PubMed  Google Scholar 

  27. Henriksen NA, Montgomery A, Kaufmann R, Berrevoet F, East B, Fischer J et al (2020) Guidelines for treatment of umbilical and epigastric hernias from the European Hernia Society and Americas Hernia Society. Br J Surg 107:171–190. https://doi.org/10.1002/bjs.11489

    Article  CAS  PubMed  Google Scholar 

  28. Jones CM, Winder JS, Potochny JD, Pauli EM (2016) Posterior component separation with transversus abdominis release: technique, utility, and outcomes in complex abdominal wall reconstruction. Plast Reconstr Surg 137:636–646. https://doi.org/10.1097/01.prs.0000475778.45783.e2

    Article  CAS  PubMed  Google Scholar 

  29. Gibreel W, Sarr MG, Rosen M, Novitsky Y (2016) Technical considerations in performing posterior component separation with transverse abdominis muscle release. Hernia 20:449–459. https://doi.org/10.1007/s10029-016-1473-y

    Article  CAS  PubMed  Google Scholar 

  30. Munoz-Rodriguez JM, Lopez-Monclus J, San-Miguel-Mendez C, Perez-Flecha-Gonzalez M, Robin-Valle-de-Lersundi A, Blázquez-Hernando LA et al (2020) Outcomes of abdominal wall reconstruction in patients with the combination of complex midline and lateral incisional hernias. Surgery 168:532–542. https://doi.org/10.1016/j.surg.2020.04.045

    Article  PubMed  Google Scholar 

  31. Daes J. International Hernia Collaboration Facebook Group post. Available at: https://www.facebook.com/groups/2164949022908. Accessed December 28, 2021

  32. Daes J, Oma E, Jorgensen LN (2021) Changes in the abdominal wall after anterior, posterior, and combined component separation. Hernia. https://doi.org/10.1007/s10029-021-02535-0 (in press)

    Article  PubMed  Google Scholar 

  33. Moores N, Conway H, Donato D, Gociman B, Pannucci CJ, Agarwal J (2019) Is release of the posterior lamella enough? A cadaveric exploration of posterior component separation techniques. Am J Surg 21:533–536. https://doi.org/10.1016/j.amjsurg.2018.12.011

    Article  Google Scholar 

  34. Majumder A, Miller HJ, Del Campo LM, Soltanian H, Novitsky YW (2018) Assessment of myofascial medialization following posterior component separation via transversus abdominis muscle release in a cadaveric model. Hernia 22:637–644. https://doi.org/10.1007/s10029-018-1771-7

    Article  CAS  PubMed  Google Scholar 

  35. Grossi JVM, Lee B, Belyansky I, Carbonell AM, Cavazzola LT, Novitsky YW et al (2021) Critical view of robotic-assisted transverse abdominal release (r-TAR). Hernia 25:1715–1725. https://doi.org/10.1007/s10029-021-02391-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Having learned of the recent death of Prof. Schumpelick, we would like to thank him in these lines for his enormous contribution to hernia surgery. We want this article, inspired by his teachings, to be a small tribute to his person.

Funding

The cadavers used in this study come from courses funded by WL Gore & Associates, Inc. Flagstaff, AZ, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lopez-Monclus.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video 1: Video clip of a cadaver lab dissection showing the preperitoneal dissection at the epigastric area following the rhomboid fat. This preperitoneal dissection can be made before the lateral release of the posterior rectus sheath in a PCS. (MP4 326507 kb)

Video 2: Video clip of a cadaver lab dissection showing the retroinguinal dissection under the linea arcuata to find, laterally, the Bogros space as the gate to the paracolic gutters and Toldt's fascia (MP4 94791 kb)

Video 3: Video clip of an incisional hernia repair by E-TEP approach. It shows the crossover remarking the importance of the midline preperitoneal fat (MP4 360772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Urena, M.Á., Lopez-Monclus, J., de Robin Valle de Lersundi, A. et al. Pathways of the preperitoneal plane: from the “fatty triangle” in Rives to the “fatty trident" in extended retromuscular abdominal wall reconstruction. A tribute to Prof. Schumpelick.. Hernia 27, 395–407 (2023). https://doi.org/10.1007/s10029-022-02602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-022-02602-0

Keywords

Navigation