Skip to main content
Log in

Regulation of Decomposition and Methane Dynamics across Natural, Commercially Mined, and Restored Northern Peatlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We examined aerobic and anaerobic microbial carbon dioxide (CO2) and methane (CH4) exchange in peat samples representing different profiles at natural, mined, mined-abandoned, and restored northern peatlands and characterized the nutrient and substrate chemistry and microbial biomass of these soils. Mining and abandonment led to reduced nutrient and substrate availability and occasionally drier conditions in surface peat resulting in a drastic reduction in CO2 and CH4 production, in agreement with previous studies. Owing mainly to wetter conditions, CH4 production and oxidation were faster in restored block-cut than natural sites, whereas in one restored site, increased substrate and nutrient availability led to much more rapid rates of CO2 production. Our work in restored block-cut sites compliments that in vacuum-harvested peatlands undergoing more recent active restoration attempts. The sites we examined covered a large range of soil C substrate quality, nutrient availability, microbial biomass, and microbial activities, allowing us to draw general conclusions about controls on microbial CO2 and CH4 dynamics using stepwise regression analysis among all sites and soil depths. Aerobic and anaerobic decomposition of peat was constrained by organic matter quality, particularly phosphorus (P) and carbon (C) chemistry, and closely linked to the size of the microbial biomass supported by these limiting resources. Methane production was more dominantly controlled by field moisture content (a proxy for anaerobism), even after 20 days of anaerobic laboratory incubation, and to a lesser extent by C substrate availability. As methanogens likely represented only a small proportion of the total microbial biomass, there were no links between total microbial biomass and CH4 production. Methane oxidation was controlled by the same factors influencing CH4 production, leading to the conclusion that CH4 oxidation is primarily controlled by substrate (that is, CH4) availability. Although restoring hydrology similar to natural sites may re-establish CH4 dynamics, there is geographic or site-specific variability in the ability to restore peat decomposition dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

REFERENCES

  • Andersen R, Francez AJ, Rochefort L. 2006. The physicochemical and microbiological status of a restored bog in Quebéc: identification of relevant criteria to monitor success. Soil Biol Biochem 38:1375–1387

    Article  CAS  Google Scholar 

  • Artz RE, Chapman SJ, Campbell CD. 2006. Substrate utilization profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol Biochem 38:2958–2962

    Article  CAS  Google Scholar 

  • Basiliko N, Yavitt JB. 2001. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry 52:133–153

    Article  CAS  Google Scholar 

  • Basiliko N, Knowles R, Moore TR. 2004. On the role of moss species and habitat in methane oxidation in northern peatlands. Wetlands 24:178–185

    Article  Google Scholar 

  • Basiliko N, Moore TR, Lafleur PM, Roulet NT. 2005. Seasonal and inter-annual decomposition, microbial biomass and nitrogen dynamics in a Canadian bog. Soil Sci 170:902–905

    Article  CAS  Google Scholar 

  • Basiliko N, Moore TR, Jeannotte R, Bubier JL. 2006. The effect of nutrient input on carbon and microbial dynamics in an ombrotrophic bog. Geomicrobiol J 23:531–543

    Article  CAS  Google Scholar 

  • Blodau C, Moore TR. 2003a. Experimental response of peatland carbon dynamics to a water table fluctuation. Aquatic Sciences 65:47–62 2003

    Article  CAS  Google Scholar 

  • Blodau C, Moore TR. 2003b. Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547

    Article  CAS  Google Scholar 

  • Chirno C, Campeau S, Rochfort L. 2006. Sphagnum establishment on bare peat: the importance of climatic variability and Sphagnum species richness. Appl Veg Sci 9:285–294

    Article  Google Scholar 

  • Cleary J, Roulet N, Moore TR. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34:456–461

    Article  PubMed  Google Scholar 

  • Croft M, Rochefort L, Beauchamp CJ. 2001. Vacuum-extraction of peatlands disturbs bacterial population and microbial biomass carbon. Appl Soil Ecol 18:1–12

    Article  Google Scholar 

  • Dinel H, Nolin MC. 2000. Spatial and temporal variability of extractable lipids as influenced by cropping history. Soil Sci Soc Am J 64:177–184

    Article  CAS  Google Scholar 

  • Dinel H, Schnitzer M, Dumontet S. 1996a. Compost maturity: extractable lipids as indicators of organic matter stability. Compost Sci Utilization. 4:6–12

    Google Scholar 

  • Dinel H, Schnitzer M, Dumontet S. 1996b. Compost maturity: chemical characteristics of extractable lipids. Compost Sci Utilization 4:16–25

  • Dinel H, Schnitzer M, Paré T, Lemee L, Ambles A, Lafond S. 2001. Changes in lipids and sterols during composting. J Environ Sci Health 36:651–665

    Article  CAS  Google Scholar 

  • Fenchel T, King GM, Blackburn TH. 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. San Diego: Academic, 307p

    Google Scholar 

  • Girard M, Lavoie C, Thériault M. 2002. The regeneration of a highly deserved ecosystem: a mined peatlands in southern Quebec. Ecosystems 5:274–288

    Article  Google Scholar 

  • Glatzel SN, Basiliko N, Moore TR. 2004. Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Grosvernier P, Matther Y, Buttler A. 1997. Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J Appl Ecol 34:471–483

    Article  Google Scholar 

  • Kalbitz K, Geyer W, Geyer S. 1999. Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen area. Biogeochemistry 47:219–238

    CAS  Google Scholar 

  • Lavoie C, Saint-Louis A, Lachance D. 2005. Vegetation dynamics on an abandoned vacuum-mined peatland: 5 years of monitoring. Wetlands Ecol Manage 13:621–633

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J. 1997. Brock biology of microorganisms, 8th edn. Upper Saddle River: Prentice Hall, 912p

    Google Scholar 

  • Madsen EL. 1998. Epistemology of environmental microbiology. Environ Sci Technol 32:429–439

    Article  CAS  Google Scholar 

  • Marinier M, Glatzel SN, Moore TR. 2004. The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Ecoscience 11:141–149

    Google Scholar 

  • McNeil P, Waddington JM. 2003. Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367

    Google Scholar 

  • Moore TR, Basiliko N. 2006. Decomposition in boreal peatlands. In: Weider RK, Vitt DH, Eds. Boreal peatland ecosystems. Berlin: Springer, pp 126–143

    Google Scholar 

  • Moore TR, Dalva M. 1997. Methane and carbon dioxide exchange potentials of peat in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–1164

    Article  CAS  Google Scholar 

  • Niemeyer J, Chen Y, Bollag JM. 1992. Characterization of humic acids, compost, and peat by diffuse reflectance Fourier-transformed infrared spectroscopy. Soil Sci 56:135–140

    CAS  Google Scholar 

  • Paré T, Dinel H, Moulin AP, Townly-Smith L. 1999. Organic matter quality and structural stability of a Black Chenozemic soil under different manure and tillage practices. Geoderma 91:311–326

    Article  Google Scholar 

  • Paul EA, Clark FE. 1996. Soil microbiology and biochemistry, 2nd edn. San Diego: Academic, 340 p

    Google Scholar 

  • Petrone RM, Waddington JM, Price JS. 2001. Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol Process 15:2839–2845

    Article  Google Scholar 

  • Petrone RM, Waddington JM, Price JS. 2003. Ecosystem-scale flux of CO2 from a restored vacuum harvested peatland. Wetlands Ecol Manage 11:419–432

    Article  CAS  Google Scholar 

  • Robert EC, Rochefort L, Garneau M. 1999. Natural revegetation of two block-cut mined peatlands in eastern Canada. Can J Bot 77:447–459

    Article  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH , Moore TR, Humphreys ER, Bubier J. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol (in press)

  • Stanek W, Silc T. 1977. Comparisons of 4 methods for determination if degree of peat humification (decomposition) with emphasis on von Post method. Can J Soil Sci 57:109–117

    Article  Google Scholar 

  • Sundh I, Nilsson M, Kikkelä C, Granberg G, Svensson BH. 2000. Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29:499–503

    Article  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE. 2001. Microfungi isolated from Sphagnum fuscum from a Southern Boreal Bog in Alberta, Canada. Bryologist 104:548–559

    Article  Google Scholar 

  • Tuittila ES, Komulainen VM, Vasander H, Laine J. 1999. Restored cut-away peatlands as a sink for atmospheric CO2. Oecologica 120:563–574

    Article  Google Scholar 

  • Tuittila ES, Komulainen VM, Vasander H, Nykänen H, Martikainen P, Laine J. 2000. Methane dynamics of a restored cut-away peatland. Global Change Biol 6:569–581

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A. 2002. Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. Holocene 12:69–80

    Article  Google Scholar 

  • Vasander H, Kettunen A. 2006. Carbon in Boreal Peatlands. In: Weider RK, Vitt DH, Eds. Boreal peatland ecosystems. Berlin: Springer, pp 165–181

    Chapter  Google Scholar 

  • Verhoeven JTA, Liefveld WM. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlandica 46:117–130

    CAS  Google Scholar 

  • Voroney RP, Winter JP, Beyaert RP. 1993. Soil microbial biomass C and N. In: Carter MR, Ed. Soil sampling and methods of analysis. Boca Raton: Lewis Publishers. pp 277–286

    Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ. 2001. Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54:115–130

    Article  CAS  Google Scholar 

  • Waddington JM, Warner KD, Kennedy GW. 2002. Cutover peatlands: a persistent source of atmospheric CO2. Global Biogeochem Cycles 16. DOI 10.1029/2001GB001398

  • Yavitt JB, Lang GE. 1990. Methane and production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46

    CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK. 1997. Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316

    CAS  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK. 2000. Controls on microbial production of methane and carbon dioxide in three Sphagnum-dominated peatland ecosystems as revealed by a reciprocal field peat transplant experiment. Geomicrobiol J 17:61–88

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Mike Dalva, Helénè Lalande, Dr. Stephan Glatzel, Michelle Marinier (McGill University), Louise Florent, Eglantine Imbeault, Dr. Judith Frégeau-Reid, and Dr. Henri Dinel (Agriculture and Agrifood Canada- Eastern Cereal and Oilseed Research Centre) for intellectual and technical support. Premier Horticulture and Sun Gro Horticulture graciously allowed site access. We are grateful for funding from the Natural Sciences and Engineering Research Council of Canada (TRM), McGill University (NB), and the Deutsche Forschungsgemeinschaft (CB). The comments of Mike Waddington and an anonymous reviewer greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Basiliko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basiliko, N., Blodau, C., Roehm, C. et al. Regulation of Decomposition and Methane Dynamics across Natural, Commercially Mined, and Restored Northern Peatlands. Ecosystems 10, 1148–1165 (2007). https://doi.org/10.1007/s10021-007-9083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9083-2

Keywords

Navigation