Skip to main content
Log in

Influence of surface layer properties on tooth root bending strength of cylindrical gears

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The trend of resource-efficient machine elements confronts design engineers with new challenges. Reduced component weight and ever increasing power densities require a gear design that enters the border area of material capacity. To embrace the potential offered by modern construction materials, calculation methods for component strength must rely on a deeper understanding of fracture and material mechanics in contrast to empirical-analytical approaches.

The aim of lightweight designs in drive technology – particularly in relation to E‑mobility – can lead conventional design methods towards larger dimensioned and therefore heavier gears. Calculation methods that empower an accurate depiction of local load and material properties are able to safely push the boundary of gear design into areas that are closer to the ultimate fatigue limit of the material and help to conserve resources that way. For this reason, the aim of the report is to prove a general applicability of the higher-order calculation approach developed by Henser for all gear geometries and material properties. This method will make for more cost- and weight-effective gear design in the future.

A two step approach shows the accuracy of the Inclusion-Based Weakest Link Model by validation on a small module helical gear and a parameter study proves the effectiveness of the Inclusion-Based Weakest Link Model by showing the influences of different sized gear geometries and material properties on calculated bending strength. In addition, the main influence parameters on the model and material properties that have different effects depending on gear size are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henser, J. Berechnung der Zahnfußtragfähigkeit von Beveloidverzahnungen. Diss., RWTH Aachen. 2015.

  2. American Gear Manufacturers Association (2004) Fundamental rating factors and calculation methods for involute spur and helical gear teeth

    Google Scholar 

  3. Norm. Calculation of load capacity of spur and helical gears. Calculation of tooth bending strength. Beuth, Berlin. 2006.

  4. Norm. Tragfähigkeitsberechnung von Stirnrädern. Berechnung der Zahnfußtragfähigkeit. Beuth, Berlin. 1987.

  5. Murakami Y (2002) Metal fatigue. Elsevier, Amsterdam

    Google Scholar 

  6. Weibull W (1959) A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademiens Handlingar. Royal Swedish Institute for Engineering, Stockholm

    MATH  Google Scholar 

  7. Hertter, T. Rechnerischer Festigkeitsnachweis der Ermüdungstragfähigkeit vergüteter und einsatzgehärteter Stirnräder. Dissertation, Technische Universität München. 2003.

  8. Stenico, A. Werkstoffmechanische Untersuchung zur Zahnfußtragfähigkeit einsatzgehärteter Zahnräder. Dissertation, Technische Universität München. 2007.

  9. Bomas H, Schleicher M, Mayr P (2001) Berechnung der Dauerfestigkeit von gekerbten und mehrachsig beanspruchten Proben aus dem einsatzgehärteten Stahl 16MnCrS5. HTM – Härterei-Technische Mitteilungen, vol. 2.

    Google Scholar 

  10. Murakami Y (2002) Metal fatigue. Elsevier, Amsterdam

    Google Scholar 

  11. Hück M (1983) Ein verbessertes Verfahren fur die Auswertung von Treppenstufenversuchen. Werkstofftechnik 24:406–417

    Article  Google Scholar 

  12. Niemann G, Winter H (2002) Getriebe allgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe. Maschinenelemente, vol. 2. Springer, Berlin Heidelberg

    Google Scholar 

  13. Norm. Calculation of load capacity of spur and helical gears. Strength and quality materials. ISO copyright office, Geneva. 2003.

  14. Dickie HF (1951) ABC inventory analysis shoots for dollars, not pennies. Fact Manag Maint 6(109):92–94

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support by the German Research Foundation (DFG) within the Cluster of Excellence “Integrative Production Technology for High Wage Countries” for the achievement of the project results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pollaschek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecher, C., Löpenhaus, C. & Pollaschek, J. Influence of surface layer properties on tooth root bending strength of cylindrical gears. Forsch Ingenieurwes 81, 191–197 (2017). https://doi.org/10.1007/s10010-017-0239-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0239-8

Navigation