Skip to main content
Log in

Evolution of morphology and grain structure of metal nanowires in initial period of templated electrodeposition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Templated electrodeposition is one of the most effective ways to prepare arrays of one-dimensional nanostructures. The growth of the nanostructures can be monitored in situ in the course of electrodeposition by analysing the current-time transients. However, the analysis of nonmonotonic current behaviour corresponding to nucleation and initial growth of the nanostructures is rarely discussed in the literature. Here, the detailed study of the initial stages of templated electrodeposition of Au inside the pores of anodic aluminium oxide is performed. The experimental tools to visualize the nanostructures formed in initial period are proposed based on the scanning and transmission electron microscopy. The observed features of deposition transients are associated with the changes in both the morphology and grain structure of the deposit and are also affected by parallel hydrogen evolution. The experimental observations are supported by the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun L, Hao Y, Chien CL, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102. https://doi.org/10.1147/rd.491.0079

    Article  CAS  Google Scholar 

  2. Lai M, Riley DJ (2008) Templated electrosynthesis of nanomaterials and porous structures. J Colloid Interface Sci 323:203–212. https://doi.org/10.1016/j.jcis.2008.04.054

    Article  CAS  PubMed  Google Scholar 

  3. Napolskii KS, Roslyakov IV, Eliseev AA, Petukhov DI, Lukashin AV, Chen SF, Liu CP, Tsirlina GA (2011) Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim Acta 56:2378–2384. https://doi.org/10.1016/j.electacta.2010.12.013

    Article  CAS  Google Scholar 

  4. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468. https://doi.org/10.1126/science.268.5216.1466

    Article  CAS  PubMed  Google Scholar 

  5. Roslyakov IV, Shirin NA, Berekchiian MV, Shatalova TB, Garshev AV, Napolskii KS (2020) Coarse-grain alpha-alumina films with highly ordered porous structure. Micropor Mesopor Mat 294:109840. https://doi.org/10.1016/j.micromeso.2019.109840

    Article  CAS  Google Scholar 

  6. Roslyakov IV, Shirin NA, Evdokimov PV, Berekchiian MV, Simonenko NP, Lyskov NV, Napolskii KS (2022) High-temperature annealing of porous anodic aluminium oxide prepared in selenic acid electrolyte. Surf Coat Tech 433:128080. https://doi.org/10.1016/j.surfcoat.2022.128080

    Article  CAS  Google Scholar 

  7. Valizadeh S, George JM, Leisner P, Hultman L (2001) Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles. Electrochim Acta 47:865–874. https://doi.org/10.1016/S0013-4686(01)00797-6

    Article  CAS  Google Scholar 

  8. Motoyama M, Fukunaka Y, Sakka T, Ogata YH, Kikuchi S (2005) Electrochemical processing of Cu and Ni nanowire arrays. J Electroanal Chem 584:84–91. https://doi.org/10.1016/j.jelechem.2005.07.023

    Article  CAS  Google Scholar 

  9. Blanco S, Vargas R, Mostany J, Borrás C, Scharifker B (2014) Modeling the Growth of Nanowire Arrays in Porous Membrane Templates. J Electrochem Soc 161:E3341–E3347. https://doi.org/10.1149/2.039408jes

    Article  CAS  Google Scholar 

  10. Ghahremaninezhad A, Dolati A (2010) Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane. ECS Trans 28:13–25. https://doi.org/10.1149/1.3503348

    Article  CAS  Google Scholar 

  11. Davydov AD, Volgin VM (2016) Template electrodeposition of metals. Review Russ J Electrochem 52:806–831. https://doi.org/10.1134/S1023193516090020

    Article  CAS  Google Scholar 

  12. Bograchev DA, Davydov AD (2021) The role of common outer diffusion layer in the metal electrodeposition into template nanopores. Electrochim Acta 367:137405. https://doi.org/10.1016/j.electacta.2020.137405

    Article  CAS  Google Scholar 

  13. Kalinin IA, Davydov AD, Leontiev AP, Napolskii KS, Sobolev A, Shatalov M, Zinigrad M, Bograchev D (2023) Influence of natural convection on the electrodeposition of copper nanowires in anodic aluminium oxide templates. Electrochim Acta 441:141766. https://doi.org/10.1016/j.electacta.2022.141766

    Article  CAS  Google Scholar 

  14. Bograchev DA, Volgin VM, Davydov AD (2013) Simple model of mass transfer in template synthesis of metal ordered nanowire arrays. Electrochim Acta 96:1–7. https://doi.org/10.1016/j.electacta.2013.02.079

    Article  CAS  Google Scholar 

  15. Noyan AA, Leontiev AP, Yakovlev MV, Roslyakov IV, Tsirlina GA, Napolskii KS (2017) Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching. Electrochim Acta 226:60–68. https://doi.org/10.1016/j.electacta.2016.12.142

    Article  CAS  Google Scholar 

  16. Srivastav AK, Shekhar R (2015) Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template. J Nanopart Res 17:14. https://doi.org/10.1007/s11051-014-2858-4

    Article  CAS  Google Scholar 

  17. Shin S, Kong BH, Kim BS, Kim KM, Cho HK, Cho HH (2011) Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition. Nanoscale Res Lett 6:467. https://doi.org/10.1186/1556-276x-6-467

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889. https://doi.org/10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  19. Isaev VA, Grishenkova OV, Zaykov YP (2018) On the theory of 3D multiple nucleation with kinetic controlled growth. J Electroanal Chem 818:265–269. https://doi.org/10.1016/j.jelechem.2018.04.051

    Article  CAS  Google Scholar 

  20. Cherevko S, Fu J, Kulyk N, Cho SM, Haam S, Chung CH (2009) Electrodeposition mechanism of palladium nanotube and nanowire arrays. J Nanosci Nanotechno 9:3154–3159. https://doi.org/10.1166/jnn.2009.011

    Article  CAS  Google Scholar 

  21. Fu J, Cherevko S, Chung CH (2008) Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem Commun 10:514–518. https://doi.org/10.1016/j.elecom.2008.01.015

    Article  CAS  Google Scholar 

  22. Maas MG, Rodijk EJB, Wouter Maijenburg A, Blank DHA, ten Elshof JE (2011) Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores. J Mater Res 26:2261–2267. https://doi.org/10.1557/jmr.2011.93

    Article  CAS  Google Scholar 

  23. Motoyama M, Fukunaka Y, Sakka T, Ogata YH (2007) Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim Acta 53:205–212. https://doi.org/10.1016/j.electacta.2007.04.122

    Article  CAS  Google Scholar 

  24. Lillo M, Losic D (2009) Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. J Membrane Sci 327:11–17. https://doi.org/10.1016/j.memsci.2008.11.033

    Article  CAS  Google Scholar 

  25. Grigoras NK, Airaksinen VM, Franssila S (2009) Coating of nanoporous membranes: atomic layer deposition versus sputtering. J Nanosci Nanotechnol. pp 3763–3770

  26. Gojo M, Stanković VD, S.M. P, (2008) Electrochemical deposition of gold in citrate solution containing thallium. Acta Chim Slov 55:330–337

    CAS  Google Scholar 

  27. Sawaguchi T, Yamada T, Okinaka Y, Itaya K (1995) Electrochemical scanning tunneling microscopy and ultrahigh-vacuum investigation of gold cyanide adlayers on Au(111) formed in aqueous solution. J Phys Chem 99:14149–14155. https://doi.org/10.1021/j100038a056

    Article  CAS  Google Scholar 

  28. Soleimany L, Dolati A, Ghorbani M (2010) A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates. J Electroanal Chem 645:28–34. https://doi.org/10.1016/j.jelechem.2010.04.007

    Article  CAS  Google Scholar 

  29. Seo B, Choi S, Kim J (2011) Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities. ACS Appl Mater Interfaces 3:441–446. https://doi.org/10.1021/am101018g

    Article  CAS  PubMed  Google Scholar 

  30. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, New Jersey

    Google Scholar 

  31. Noyan AA, Kolesnik IV, Leont’ev AP, Napol’skii KS, (2023) Electrocrystallization of metals in channels of porous films of anodic aluminum oxide: the real template structure and the quantitative model of electrodeposition. Russ J Electrochem 59:489–500. https://doi.org/10.1134/S1023193523070078

    Article  CAS  Google Scholar 

  32. Wheeler D, Josell D, Moffat TP (2003) Modeling superconformal electrodeposition using the level set method. J Electrochem Soc 150:C302. https://doi.org/10.1149/1.1562598

    Article  CAS  Google Scholar 

  33. Adalsteinsson D, Sethian JA (1995) A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations. J Comput Phys 122:348–366. https://doi.org/10.1006/jcph.1995.1221

    Article  Google Scholar 

  34. Gough DA, Leypoldt JK (1979) Membrane-covered, rotated disk electrode. Anal Chem 51:439–444. https://doi.org/10.1021/ac50039a028

    Article  CAS  Google Scholar 

  35. Miller CJ, Majda M (1986) Microporous aluminum-oxide films at electrodes. 2. Studies of electron-transport in the Al2O3 matrix derivatized by adsorption of poly(4-vinylpyridine). J Electroanal Chem 207:49–72. https://doi.org/10.1016/0022-0728(86)87062-0

    Article  CAS  Google Scholar 

  36. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Springer, New York

    Google Scholar 

  37. Lee W, Scholz R, Nielsch K, Gösele U (2005) A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew Chem Int Edit 44:6050–6054. https://doi.org/10.1002/anie.200501341

    Article  CAS  Google Scholar 

  38. Huang XH, Li GH, Sun GZ, Dou XC, Li L, Zheng LX (2010) Initial growth of single-crystalline nanowires: from 3D nucleation to 2D growth. Nanoscale Res Lett 5:1057. https://doi.org/10.1007/s11671-010-9602-5

    Article  CAS  PubMed  Google Scholar 

  39. Shiave AI, Mohan R, Samykano M (2022) Crystal-structural characteristics of template-assisted electrodeposited cobalt nanowires: effect of synthesis current density and temperature. MRS Advances 7:376–382. https://doi.org/10.1557/s43580-021-00137-7

    Article  CAS  Google Scholar 

  40. Lyu S, Lei DY, Liu W, Yao H, Mo D, Chen Y, Hu P, Sun Y, Liu J, Duan JL (2015) Cyanide-free preparation of gold nanowires: controlled crystallinity, crystallographic orientation and enhanced field emission. RSC Adv 5:32103–32109. https://doi.org/10.1039/c5ra00994d

    Article  CAS  Google Scholar 

  41. Pan H, Sun H, Poh C, Feng Y, Lin J (2005) Single-crystal growth of metallic nanowires with preferred orientation. Nanotechnology 16:1559–1564. https://doi.org/10.1088/0957-4484/16/9/025

    Article  CAS  Google Scholar 

  42. Kolmychek IA, Pomozov AR, Leontiev AP, Napolskii KS, Murzina TV (2018) Magneto-optical effects in hyperbolic metamaterials. Opt Lett 43:3917–3920. https://doi.org/10.1364/ol.43.003917

    Article  CAS  PubMed  Google Scholar 

  43. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871. https://doi.org/10.1038/nmat2546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SEM images were recorded using scientific equipment purchased by the Lomonosov Moscow State University Program of Development. TEM analysis was performed using the equipment of the Shared Research Centre of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment FSRC “Crystallography and Photonics” of RAS. GTs acknowledges the support of Pause program.

Funding

This work was supported by the Russian Science Foundation (Grant No. 18-73-10151). Anodic alumina templates were obtained under financial support of the RSF (Grant No. 19-73-10176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Napolskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontiev, A.P., Bograchev, D.A., Khmelenin, D.N. et al. Evolution of morphology and grain structure of metal nanowires in initial period of templated electrodeposition. J Solid State Electrochem 28, 1619–1629 (2024). https://doi.org/10.1007/s10008-023-05734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05734-0

Navigation