Skip to main content

Advertisement

Log in

Assessing and measuring the active site density of PGM-free ORR catalysts

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fuel cells are already employed in commercial transportation even though their price is still too high to enable widespread production. A viable and promising pathway taken to lower this price is the replacement of expensive constitutes, namely the platinum-based catalysts at the cathode, by platinum group metal-free catalysts based on abundant materials, such as iron. This led to the development of iron-based catalysts that show high activity towards the oxygen reduction reaction. The extraction of the intrinsic catalytic activity of any catalyst is important both for finding relations between the chemical properties of the active sites and their activity, as well as a comparison measure between catalysts. An important parameter that has been elusive for many years is the turnover frequency, which is derived form the number of electrochemical active sites’ density (EASD). The ability to measure the EASD was very limited until the past few years, and several methods have been proposed to measure it. It is important for the investigation of catalysts’ stability and the development of durable catalysts. This review aims to critically analyze the current methodologies used for the quantification and analysis of the active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Eikerling M, Kulikovsky A (2014) Polymer electrolyte fuel cells: physical principles of materials and operation. CRC Press

  2. Neyerlin K et al (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154(7):B631

    Article  CAS  Google Scholar 

  3. Lori O, Elbaz L (2020) Recent Advances in synthesis and utilization of ultra-low loading of precious metal-based catalysts for fuel cells. ChemCatChem 12(13):3434–3446

    Article  CAS  Google Scholar 

  4. Martinez U et al (2019) Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv Mater 31(31):1806545

    Article  CAS  Google Scholar 

  5. Shao Y et al (2019) PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv Mater 31(31):1807615

    Article  CAS  Google Scholar 

  6. He Y et al (2020) Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 49(11):3484–3524

    Article  CAS  PubMed  Google Scholar 

  7. Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324(5923):48–49

    Article  CAS  PubMed  Google Scholar 

  8. Zion N et al (2021) Porphyrin aerogel catalysts for oxygen reduction reaction in anion-exchange membrane fuel cells. Adv Func Mater 31(24):2100963

    Article  CAS  Google Scholar 

  9. Peles-Strahl L et al (2021) Bipyridine modified conjugated carbon aerogels as a platform for the electrocatalysis of oxygen reduction reaction. Adv Func Mater 31(26):2100163

    Article  CAS  Google Scholar 

  10. Zion N et al Heat-treated aerogel as a catalyst for the oxygen reduction reaction. Angewandte Chemie International Edition. (n/a)

  11. Friedman A, Elbaz L (2021) Heterogeneous electrocatalytic reduction of carbon dioxide with transition metal complexes. J Catal 395:23–35

    Article  CAS  Google Scholar 

  12. Friedman A et al (2019) Electropolymerization of PGM-free molecular catalyst for formation of 3D structures with high density of catalytic sites. Electrochim Acta 310:13–19

    Article  CAS  Google Scholar 

  13. Jia Q et al (2016) Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29:65–82

    Article  CAS  Google Scholar 

  14. Banham D et al (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334–348

    Article  CAS  Google Scholar 

  15. Li J et al (2016) Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ Sci 9(7):2418–2432

    Article  CAS  Google Scholar 

  16. Holby EF, Wang G, Zelenay P (2020) Acid stability and demetalation of PGM-Free ORR electrocatalyst structures from density functional theory: a model for “single-atom catalyst” dissolution. ACS Catal 10(24):14527–14539

    Article  CAS  Google Scholar 

  17. Dodelet J-P et al (2021) Reply to the ‘Comment on “Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH3 catalyst”’ by Xi Yin, Edward F. Holby and Piotr Zelenay. Energy Environ Sci 14(2):1034–1041

  18. Glibin VP et al (2019) Non-PGM electrocatalysts for PEM fuel cells: thermodynamic stability and DFT evaluation of fluorinated FeN4-based ORR catalysts. J Electrochem Soc 166(7):F3277

    Article  CAS  Google Scholar 

  19. Matanovic I, Artyushkova K, Atanassov P (2018) Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: perspectives and challenges. Curr Opin Electrochem 9:137–144

    Article  CAS  Google Scholar 

  20. Tylus U et al (2014) Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J Phys Chem C 118(17):8999–9008

    Article  CAS  Google Scholar 

  21. Osmieri L et al (2019) Elucidation of Fe-NC electrocatalyst active site functionality via in-situ X-ray absorption and operando determination of oxygen reduction reaction kinetics in a PEFC. Appl Catal B 257:117929

    Article  CAS  Google Scholar 

  22. Yin X, Zelenay P (2018) Kinetic models for the degradation mechanisms of PGM-Free ORR catalysts. ECS Trans 85(13):1239–1250

    Article  CAS  Google Scholar 

  23. Li J et al (2021) Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat Catal 4(1):10–19

    Article  CAS  Google Scholar 

  24. Jiao L et al (2021) Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat Mater

  25. Martinez U et al (2019) Experimental and theoretical trends of PGM-free electrocatalysts for the oxygen reduction reaction with different transition metals. J Electrochem Soc 166(7):F3136

    Article  CAS  Google Scholar 

  26. Rebarchik M et al (2020) How noninnocent spectator species improve the oxygen reduction activity of single-atom catalysts: microkinetic models from first-principles calculations. ACS Catal 10(16):9129–9135

    Article  CAS  Google Scholar 

  27. Zagal JH, Koper MT (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55(47):14510–14521

    Article  CAS  Google Scholar 

  28. Calle-Vallejo F et al (2013) Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf Sci 607:47–53

    Article  CAS  Google Scholar 

  29. Koper MT (2011) Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J Electroanal Chem 660(2):254–260

    Article  CAS  Google Scholar 

  30. Wang Y, Tang Y-J, Zhou K (2019) Self-adjusting activity induced by intrinsic reaction intermediate in Fe–N–C single-atom catalysts. J Am Chem Soc 141(36):14115–14119

    Article  CAS  PubMed  Google Scholar 

  31. Banham D et al (2018) Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for real-world proton exchange membrane fuel cell applications. Sci Adv 2018. 4(3):p. eaar7180

  32. Baroody HA, Stolar DB, Eikerling MH (2018) Modelling-based data treatment and analytics of catalyst degradation in polymer electrolyte fuel cells. Electrochim Acta 283:1006–1016

    Article  CAS  Google Scholar 

  33. Huang J, Eikerling M (2019) Modeling the oxygen reduction reaction at platinum-based catalysts: a brief review of recent developments. Curr Opin Electrochem 13:157–165

    Article  CAS  Google Scholar 

  34. Eslamibidgoli MJ et al (2016) How theory and simulation can drive fuel cell electrocatalysis. Nano Energy 29:334–361

    Article  CAS  Google Scholar 

  35. Kozhushner A, Zion N, Elbaz L (2021) Methods for assessment and measurement of the active site density in platinum group metal–free oxygen reduction reaction catalysts. Curr Opin Electrochem 25:100620

    Article  CAS  Google Scholar 

  36. Malko D, Kucernak A, Lopes T (2016) In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat Commun 7(1):1–7

    Article  CAS  Google Scholar 

  37. Bae G et al (2021) Quantification of active site density and turnover frequency: from single-atom metal to nanoparticle electrocatalysts. JACS Au

  38. Malko D, Kucernak A, Lopes T (2016) Performance of Fe–N/C oxygen reduction electrocatalysts toward NO2–, NO, and NH2OH electroreduction: from fundamental insights into the active center to a new method for environmental nitrite destruction. J Am Chem Soc 138(49):16056–16068

    Article  CAS  PubMed  Google Scholar 

  39. Luo F et al (2019) Accurate evaluation of active-site density (SD) and turnover frequency (TOF) of PGM-free metal–nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption. ACS Catal 9(6):4841–4852

    Article  CAS  Google Scholar 

  40. Leonard ND et al (2018) Deconvolution of utilization, site density, and turnover frequency of Fe–nitrogen–carbon oxygen reduction reaction catalysts prepared with secondary N-precursors. ACS Catal 8(3):1640–1647

    Article  CAS  Google Scholar 

  41. Sahraie NR et al (2015) Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat Commun 6(1):1–9

    Article  CAS  Google Scholar 

  42. Luo F et al (2021) Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chem Sci 12(1):384–396

    Article  CAS  Google Scholar 

  43. Jaouen F et al (2018) Toward platinum group metal-free catalysts for hydrogen/air proton-exchange membrane fuel cells. Johnson Matthey Technol Rev 62:231–255

    Article  CAS  Google Scholar 

  44. Boldrin P et al (2021) Deactivation, reactivation and super-activation of Fe-N/C oxygen reduction electrocatalysts: gas sorption, physical and electrochemical investigation using NO and O2. Appl Catal B 292:120169

    Article  CAS  Google Scholar 

  45. Primbs M et al (2020) Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy Environ Sci 13(8):2480–2500

    Article  CAS  Google Scholar 

  46. Jin Z et al (2022) Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Acc Chem Res 55(5):759–769

    Article  CAS  PubMed  Google Scholar 

  47. Snitkoff-Sol RZ et al (2022) Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat Catal 5(2):163–170

    Article  CAS  Google Scholar 

  48. Asset T, Atanassov P (2020) Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 4(1):33–44

    Article  CAS  Google Scholar 

  49. Asset T, Maillard F, Jaouen F (2022) Electrocatalysis with single‐metal atom sites in doped carbon matrices. Support Met Single Atom Catalysis 531–582

  50. Wang W et al (2019) Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal 9(11):10126–10141

    Article  CAS  Google Scholar 

  51. Muñoz-Becerra K et al (2020) Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Curr Opin Electrochem 23:154–161

    Article  CAS  Google Scholar 

  52. Li J, Jaouen F (2018) Structure and activity of metal-centered coordination sites in pyrolyzed metal–nitrogen–carbon catalysts for the electrochemical reduction of O2. Curr Opin Electrochem 9:198–206

    Article  CAS  Google Scholar 

  53. Specchia S, Atanassov P, Zagal JH (2021) Mapping transition metal–nitrogen–carbon catalyst performance on the critical descriptor diagram. Curr Opin Electrochem 27:100687

    Article  CAS  Google Scholar 

  54. Ni L et al (2021) In situ 57Fe Mössbauer study of a porphyrin based FeNC catalyst for ORR. Electrochim Acta 395:139200

    Article  CAS  Google Scholar 

  55. Jia Q et al (2015) Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12):12496–12505

    Article  CAS  PubMed  Google Scholar 

  56. Yang H et al (2019) A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun 10(1):4585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liang Q et al (2022) General synergistic capture-bonding superassembly of atomically dispersed catalysts on micropore-vacancy frameworks. Nano Lett 22(7):2889–2897

    Article  CAS  PubMed  Google Scholar 

  58. Lim T et al (2020) Atomically dispersed Pt–N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat Commun 11(1):412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zitolo A et al (2015) Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat Mater 14(9):937–942

    Article  CAS  PubMed  Google Scholar 

  60. Choi CH et al (2018) The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ Sci 11(11):3176–3182

    Article  CAS  Google Scholar 

  61. Zúñiga C et al (2019) Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-NC catalysts in basic media. Electrochem Commun 102:78–82

    Article  CAS  Google Scholar 

  62. Venegas R et al (2020) Experimental reactivity descriptors of M-N-C catalysts for the oxygen reduction reaction. Electrochim Acta 332:135340

    Article  CAS  Google Scholar 

  63. Loyola CZ et al (2022) Activity volcano plots for the oxygen reduction reaction using FeN4 complexes: from reported experimental data to the electrochemical meaning. Curr Opin Electrochem 32:100923

    Article  CAS  Google Scholar 

  64. Kumar A et al (2021) Molecular-MN4 vs atomically dispersed M− N4− C electrocatalysts for oxygen reduction reaction. Coord Chem Rev 446:214122

    Article  CAS  Google Scholar 

  65. Mun Y et al (2019) Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J Am Chem Soc 141(15):6254–6262

    Article  CAS  PubMed  Google Scholar 

  66. Mineva T et al (2019) Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and 57Fe Mössbauer Spectroscopy. ACS Catal 9(10):9359–9371

    Article  CAS  Google Scholar 

  67. Dzara MJ et al (2020) Characterizing complex gas–solid interfaces with in situ spectroscopy: oxygen adsorption behavior on Fe–N–C Catalysts. J Physic Chem C 124(30):16529–16543

    Article  CAS  Google Scholar 

  68. Ni L et al (2021) Active site identification in FeNC catalysts and their assignment to the oxygen reduction reaction pathway by in situ 57Fe Mössbauer spectroscopy. Adv Energy Sustain Res 2(2):2000064

    Article  Google Scholar 

  69. Wan X et al (2019) Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2(3):259–268

    Article  CAS  Google Scholar 

  70. Jiao L et al (2020) Chemical vapor deposition of Fe-NC oxygen reduction catalysts with full utilization of dense Fe-N4 sites

  71. Kumar K et al (2020) On the Influence of Oxygen on the Degradation of Fe-N-C Catalysts. Angew Chem Int Ed Engl 59(8):3235–3243

    Article  CAS  PubMed  Google Scholar 

  72. Jin Z et al (2021) Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat Catal 4(7):615–622

    Article  CAS  Google Scholar 

  73. Li P et al (2020) Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater Today 35:78–86

    Article  CAS  Google Scholar 

  74. Chung MW et al (2018) Electrochemical evidence for two sub-families of FeNxCy moieties with concentration-dependent cyanide poisoning. Chem Electro Chem 5(14):1880–1885

    CAS  Google Scholar 

  75. Birry L, Zagal JH, Dodelet J-P (2010) Does CO poison Fe-based catalysts for ORR? Electrochem Commun 12(5):628–631

    Article  CAS  Google Scholar 

  76. Zhang Q et al (2016) CO poisoning effects on FeNC and CNx ORR catalysts: a combined experimental–computational study. J Phys Chem C 120(28):15173–15184

    Article  CAS  Google Scholar 

  77. Wang Q et al (2014) Phenylenediamine-based FeN x/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J Am Chem Soc 136(31):10882–10885

    Article  CAS  PubMed  Google Scholar 

  78. Bond AM et al (2015) An integrated instrumental and theoretical approach to quantitative electrode kinetic studies based on large amplitude Fourier transformed ac voltammetry: a mini review. Electrochem Commun 57:78–83

    Article  CAS  Google Scholar 

  79. Zhang Y et al (2018) Fourier transformed alternating current voltammetry in electromaterials research: direct visualisation of important underlying electron transfer processes. Curr Opin Electrochem 10:72–81

    Article  CAS  Google Scholar 

  80. Ma H (2017) Mechanistic Electrochemistry: investigations of electrocatalytic mechanisms for H2S detection applications. University of Cambridge

  81. Zhang Y et al (2017) Direct detection of electron transfer reactions underpinning the tin-catalyzed electrochemical reduction of CO2 using Fourier-transformed ac voltammetry. ACS Catal 7(7):4846–4853

    Article  CAS  Google Scholar 

  82. Stevenson GP et al (2012) Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude Fourier transformed AC voltammetry. Langmuir 28(25):9864–9877

    Article  CAS  PubMed  Google Scholar 

  83. Adamson H et al (2017) Analysis of HypD disulfide redox chemistry via optimization of Fourier transformed ac voltammetric data. Anal Chem 89(3):1565–1573

    Article  CAS  PubMed  Google Scholar 

  84. Engblom SO, Myland JC, Oldham KB (2000) Must ac voltammetry employ small signals? J Electroanal Chem 480(1–2):120–132

    Article  CAS  Google Scholar 

  85. Gavaghan DJ, Bond AM (2000) A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform methods. J Electroanal Chem 480(1–2):133–149

    Article  CAS  Google Scholar 

  86. Lee C-Y et al (2011) Theoretical and experimental investigation of surface-confined two-center metalloproteins by large-amplitude Fourier transformed ac voltammetry. J Electroanal Chem 656(1–2):293–303

    Article  CAS  Google Scholar 

  87. Lloyd-Laney H et al (2020a) A Spotter’s guide to dispersion in surface-confined voltammetry experiments

  88. Lloyd-Laney H et al (2020b) Using purely sinusoidal voltammetry for rapid parameterization of surface-confined electrochemistry

  89. Kennedy GF, Bond AM, Simonov AN (2017) Modelling ac voltammetry with MECSim: facilitating simulation–experiment comparisons. Curr Opin Electrochem 1(1):140–147

    Article  CAS  Google Scholar 

  90. Nardis S et al (2019) Metal complexes of corrole. Coord Chem Rev 388:360–405

    Article  CAS  Google Scholar 

  91. Robinson M et al (2018) Integration of heuristic and automated parametrization of three unresolved two-electron surface-confined polyoxometalate reduction processes by AC voltammetry. Chem Electro Chem 5(23):3771–3785

    CAS  Google Scholar 

  92. Adamson H, Bond AM, Parkin A (2017) Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem Commun 53(69):9519–9533

    Article  CAS  Google Scholar 

  93. Adamson H et al (2015) Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme. Proc Natl Acad Sci 112(47):14506–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen L et al (2017) Electrochemical reduction of CO2 with an oxide-derived lead nano-coralline electrode in dimcarb. Chem Electro Chem 4(6):1402–1410

    CAS  Google Scholar 

  95. Fleming BD et al (2007) Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using dc and large-amplitude Fourier transformed ac voltammetry. Anal Chem 79(17):6515–6526

    Article  CAS  PubMed  Google Scholar 

  96. Guo S-X et al (2014) Facile electrochemical co-deposition of a graphene–cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions. Phys Chem Chem Phys 16(35):19035–19045

    Article  CAS  PubMed  Google Scholar 

  97. Lee C-Y, Bond AM (2008) Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude fourier transformed ac voltammetric experiments. Anal Chem 81(2):584–594

    Article  CAS  Google Scholar 

  98. Li J, Bond AM, Zhang J (2015) Probing electrolyte cation effects on the electron transfer kinetics of the [α-SiW12O40] 4−/5− and [α-SiW12O40] 5−/6− processes using a boron-doped diamond electrode. Electrochim Acta 178:631–637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Israeli Ministry of Energy, The Israeli Ministry of Science and Technology and the Israeli Science Foundation for supporting this work. R. Z. S. would like to thank the Israeli Ministry of Energy for his fellowship. This work was conducted under the framework of the Israeli Fuel Cells Consortium. The authors would like to dedicate this work to celebrate Prof. Doron Aurbach 70th birthday. To one of the world’s pillars in modern electrochemistry and energy research, and a great friend!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Elbaz.

Additional information

For the special issue dedicated to the 70th birthday of Doron Aurbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snitkoff-Sol, R.Z., Elbaz, L. Assessing and measuring the active site density of PGM-free ORR catalysts. J Solid State Electrochem 26, 1839–1850 (2022). https://doi.org/10.1007/s10008-022-05236-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05236-5

Keywords

Profiles

  1. Lior Elbaz