Skip to main content
Log in

Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metal sulfide and oxides have drawn interest as economical substitutes to noble metal catalysts due to their ability for oxygen evolution reaction (OER) activities. The inability of many sulfides and oxide nanocomposite materials has been produced in recent years to significantly boost their low OER activity. In the current study, we fabricated a novel lanthanum sulfide (La2S3) nanocrystal decorated on zirconium dioxide (ZrO2) nanoflakes for OER electrocatalyst. The composite attains a low overpotential of 280 mV at a current density of 10 mA/cm2 and outstanding stability of 30 h. The increased catalytic activity of the Zr-O–O superoxo group is responsible for the transfer of electron tendency from La species to ZrO2, which favors the rupture of the bond of Zr–O in the steady arrangement. Hence, the present work developed an efficient La2S3-decorated ZrO2-based oxygen evolution electrocatalyst instead of using rare earth viable catalysts like ruthenium oxide (RuO2) or iridium oxide (IrO2).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abid AG, Manzoor S, Usman M, Munawar T, Nisa MU, Iqbal F, Ashiq MN, Najam-ul-Haq M, Shah A, Imran M (2021) Scalable synthesis of Sm2O3/Fe2O3 hierarchical oxygen vacancy-based gyroid-inspired morphology: with enhanced electrocatalytic activity for oxygen evolution performance. Energy Fuels 35:17820–17832

    Article  CAS  Google Scholar 

  2. Rehman MY, Manzoor S, Nazar N, Abid AG, Qureshi AM, Chughtai AH, Joya KS, Shah A, Ashiq MN (2021) Facile synthesis of novel carbon dots@ metal organic framework composite for remarkable and highly sustained oxygen evolution reaction. J Alloys Compd 856:158038

    Article  CAS  Google Scholar 

  3. Hao J, Yang W, Peng Z, Zhang C, Huang Z, Shi W (2017) A nitrogen doping method for CoS2 electrocatalysts with enhanced water oxidation performance. ACS Catal 7:4214–4220

    Article  CAS  Google Scholar 

  4. Wang F, Xia L, Li X, Yang W, Zhao Y, Mao J (2021) Nano-ferric oxide embedded in graphene oxide: high-performance electrocatalyst for nitrogen reduction at ambient condition. Energy Environ Mater 4:88–94

    Article  CAS  Google Scholar 

  5. Liu C, Zhou W, Zhang J, Chen Z, Liu S, Zhang Y, Yang J, Xu L, Hu W, Chen Y (2020) Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv Energy Mater 10:2001397

    Article  CAS  Google Scholar 

  6. Chhetri K, Muthurasu A, Dahal B, Kim T, Mukhiya T, Chae S-H, Ko T, Choi Y, Kim H (2022) Engineering the abundant heterointerfaces of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2 nanoarray hybrids for electrocatalytic water splitting. Mater Today Nano 17:100146

    Article  CAS  Google Scholar 

  7. Kim J, Jun A, Gwon O, Yoo S, Liu M, Shin J, Lim TH, Kim G (2018) Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano Energy 44:121–126

    Article  CAS  Google Scholar 

  8. Abdelkareem MA, Elsaid K, Wilberforce T, Kamil M, Sayed ET, Olabi A (2021) Environmental aspects of fuel cells: a review. Sci Total Environ 752:141803

    Article  CAS  PubMed  Google Scholar 

  9. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786

    Article  CAS  PubMed  Google Scholar 

  10. Nisar L, Sadaqat M, Hassan A, Shah A, Najam-Ul-Haq M, Ashiq MN, Ehsan MF, Joya KS (2020) Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel 280:118666

    Article  CAS  Google Scholar 

  11. Hassan A, Nisar L, Iqbal R, Sadaqat M, Hussain F, Ashiq MN, Najam-ul-Haq M, Shah A, Joya KS (2021) Copper telluride nanowires for high performance electrocatalytic water oxidation in alkaline media. J Power Sources 491:229628

    Article  CAS  Google Scholar 

  12. Sadaqat M, Manzoor S, Nisar L, Hassan A, Tyagi D, Shah JH, Ashiq MN, Joya KS, Alshahrani T, Najam-ul-Haq M (2021) Iron doped nickel ditelluride hierarchical nanoflakes arrays directly grown on nickel foam as robust electrodes for oxygen evolution reaction. Electrochim Acta 371:137830

    Article  CAS  Google Scholar 

  13. Liu PF, Yin H, Fu HQ, Zu MY, Yang HG, Zhao H (2020) Activation strategies of water-splitting electrocatalysts. J Mater Chem A 8:10096–10129

    Article  CAS  Google Scholar 

  14. Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke, (2020) A key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587:408–413

    Article  CAS  PubMed  Google Scholar 

  15. Elmaci G (2020) Microwave assisted green synthesis of Ag/AgO nanocatalyst as an efficient OER catalyst in neutral media. Hittite J Sci Eng 7:61–65

    Article  Google Scholar 

  16. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593

    Article  CAS  PubMed  Google Scholar 

  17. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772

    Article  CAS  Google Scholar 

  18. Pei J, Mao J, Liang X, Chen C, Peng Q, Wang D, Li Y (2016) Ir–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chem comm 52:3793–3796

    Article  CAS  PubMed  Google Scholar 

  19. Ji S-M, Muthurasu A, Chhetri K, Kim HY (2022) Metal-organic framework assisted vanadium oxide nanorods as efficient electrode materials for water oxidation. J of Colloid and Interface Sci 618:475–482

    Article  CAS  Google Scholar 

  20. Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J (2020) Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater 32:1806326

    Article  CAS  Google Scholar 

  21. Anantharaj S, Aravindan V (2020) Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv Energy Mater 10:1902666

    Article  CAS  Google Scholar 

  22. She L, Zhao G, Ma T et al (2022) On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv Funct Mater 32:2108465

    Article  CAS  Google Scholar 

  23. Xu J, Lian Z, Wei B et al (2020) Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media. ACS Catal 10:3571–3579

    Article  CAS  Google Scholar 

  24. Zhang Z, Wang H, Ma M et al (2021) Integrating NiMoO wafer as a heterogeneous ‘turbo’ for engineering robust Ru-based electrocatalyst for overall water splitting. Chem Eng J 420:127686

    Article  CAS  Google Scholar 

  25. Lyu F, Wang Q, Choi SM, Yin Y (2019) Noble-metal-free electrocatalysts for oxygen evolution. Small 15:1804201

    Article  CAS  Google Scholar 

  26. Chhetri K, Tiwari AP, Dahal B, Ojha GP, Mukhiya T, Lee M, Kim T, Chae S-H, Muthurasu A, Kim HY (2020) A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J of Electroanaly Chem 856:113670

    Article  CAS  Google Scholar 

  27. Saha S, Ganguli AK (2017) FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER). ChemSelect 2:1630–1636

    CAS  Google Scholar 

  28. Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z (2021) Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction. Small Methods 5:2100834

    Article  CAS  Google Scholar 

  29. Yu X, He X, Li R, Gou X (2021) One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density. Dalton Trans 50:8102–8110

    Article  CAS  PubMed  Google Scholar 

  30. Peng LJ, Huang JP, Pan QR, Liang Y, Yin N, Xu HC, Li N (2021) A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn–air batteries. RSC Adv 11:19406–19416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ullah N, Ullah R, Khan S, Xu Y (2021) Boron nitride-based electrocatalysts for HER, OER, and ORR: a mini-review. Front Mater Sci 15:543–552

    Article  Google Scholar 

  32. Chhetri K, Dahal B, Mukhiya T, Tiwari AP, Muthurasu A, Kim T, Kim H, Kim HY (2021) Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon f rom copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 179:89–99

    Article  CAS  Google Scholar 

  33. Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y (2021) Defect-rich FeN0. 023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS appl mater interfaces 13:8306–8314

    Article  CAS  PubMed  Google Scholar 

  34. Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z (2021) Heterogeneous lamellar-edged Fe-Ni (OH) 2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res 14:1149–1155

    Article  CAS  Google Scholar 

  35. Xu P, Wang H, Liu J, Feng X, Ji W, Au CT (2021) High-performance Ni x Co3-xO4/Ti3C2T x-HT interfacial nanohybrid for electrochemical overall water splitting. ACS Appl Mater Interfaces 13:34308–34319

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Cai S, Zhao G, Gao Z, Liu S, Li H, Chen L, Li M, Yang X, Guo H (2021) Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: towards efficient overall water splitting. J Energy Chem 62:440–450

    Article  Google Scholar 

  37. Yang F, Xiong T, Huang P, Zhou S, Tan Q, Yang H, Huang Y, Balogun MSJT (2021) Nanostructured transition metal compounds coated 3D porous core-shell carbon fiber as monolith water splitting electrocatalysts: a general strategy. Chem Eng J 423:130279

    Article  CAS  Google Scholar 

  38. Alsaç EP, Bodappa N, Whittingham AW, Liu Y, de Lazzari A, Smith RD (2021) Structure–property correlations for analysis of heterogeneous electrocatalysts. Chem Phys Rev 2:031306

    Article  CAS  Google Scholar 

  39. Zhao S, Yang M, Tan Y, Brett DJ, He G, Parkin IP (2021) Facile room-temperature synthesis of cobalt sulphide for efficient oxygen evolution reaction. Multifunct Mater 4:025001

    Article  CAS  Google Scholar 

  40. Kashinath L (2021) Microwave-hydrothermal synthesis of copper sulphide nanorods embedded on graphene sheets as an efficient electrocatalyst for excellent hydrogen evolution reaction. Fuel 291:120143

    Article  CAS  Google Scholar 

  41. Ali H, Ghosh S, Mondal A (2021) Nickel sulphide flakes improved cone-shaped graphite electrode for high-performance OER activity. Bull Mater Sci 44:1–9

    Article  CAS  Google Scholar 

  42. Mane VJ, Kale SB, Ubale SB, Lokhande VC, Patil UM, Lokhande CD (2021) Lanthanum sulfide-manganese sulfide/graphene oxide (La2S3-MnS/GO) composite thin film as an electrocatalyst for oxygen evolution reactions. J Solid State Electrochem 25:1775–1788

    Article  CAS  Google Scholar 

  43. Nouseen S, Singh P, Lavate S, Chattopadhyay J, Kuchkaev AM, Yakhvarov DG, Srivastava R (2021) Transition metal based ternary hierarchical metal sulphide microspheres as electrocatalyst for splitting of water into hydrogen and oxygen fuel. Catal Today (in press)

  44. Wang B, Zhao P, Feng J, Chen D, Huang Y, Sui L, Dong H, Ma S, Dong L, Yu L (2021) Carbon-based 0D/1D/2D assembly with desired structures and defect states as non-metal bifunctional electrocatalyst for zinc-air battery. J Colloid Interface Sci 588:184–195

    Article  CAS  PubMed  Google Scholar 

  45. Zhao C-X, Liu J-N, Wang J, Wang C, Guo X, Li X-Y, Chen X, Song L, Li BQ, Zhang Q (2022) A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci Adv 8:eabn5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu B, Wang S, Wang C-Y, Ma B-Z, Chen Y-Q (2020) Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution. Int J Miner Metall Mater 27:264–273

    Article  CAS  Google Scholar 

  47. Li R, Zhang R, Qiao Y, Zhang D, Cui Z, Wang W (2022) Heterostructure Ni (OH) 2/ZrO2 catalyst can achieve efficient oxygen reduction reaction. Chem Eng Sci 250:117398

    Article  CAS  Google Scholar 

  48. Xie H, Geng Q, Liu X, Mao J (2022) Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures. Front Chem Sci Eng 16:376–383

    Article  CAS  Google Scholar 

  49. Yu J, Lu K, Wang C, Wang Z, Fan C, Bai G, Wang G, Yu F (2021) Modification of NiFe layered double hydroxide by lanthanum doping for boosting water splitting. Electrochim Acta 390:138824

    Article  CAS  Google Scholar 

  50. Sakamaki A, Ogihara H, Yoshida-Hirahara M, Kurokawa H (2021) Precursor accumulation on nanocarbons for the synthesis of LaCoO3 nanoparticles as electrocatalysts for oxygen evolution reaction. RSC Adv 11:20313–20321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei R, Zhang K, Zhao P, An Y, Tang C, Chen C, Li X, Ma X, Ma Y, Hao X (2021) Defect-rich FeCoNiPB/(FeCoNi)3O4-x high-entropy composite nanoparticles for oxygen evolution reaction: impact of surface activation. Appl Surface Sci 549:149327

    Article  CAS  Google Scholar 

  52. Sadaqat M, Nisar L, Hussain F, Ashiq MN, Shah A, Ehsan MF, Najam-Ul-Haq M, Joya KS (2019) Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J Mater Chem A 7:26410–26420

    Article  CAS  Google Scholar 

  53. Hu D, Wang X, Yang H, Liu D, Wang Y, Guo J, Wu T (2018) Host-guest electrocatalyst with cage-confined cuprous sulfide nanoparticles in etched chalcogenide semiconductor zeolite for highly efficient oxygen reduction reaction. Electrochimi Acta 282:877–885

    Article  CAS  Google Scholar 

  54. Zheng YR, Gao MR, Gao Q, Li HH, Xu J, Wu ZY, Yu SH (2015) An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small 11:182–188

    Article  CAS  PubMed  Google Scholar 

  55. Galani SM, Mondal A, Srivastava DN, Panda AB (2020) Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting. Int J Hydrog Energy 45:18635–18644

    Article  CAS  Google Scholar 

  56. Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9:1771–1782

    Article  CAS  Google Scholar 

  57. Gozzo CB, Soares MR, Sczancoski JC, Nogueira IC, Leite ER (2019) Investigation of the electrocatalytic performance for oxygen evolution reaction of Fe-doped lanthanum nickelate deposited on pyrolytic graphite sheets. Inter J Hydrog Energy 44:21659–21672

    Article  CAS  Google Scholar 

  58. Qu M, Jiang Y, Yang M, Liu S, Guo Q, Shen W, Li M, He R (2020) Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl Catal B Environ 263:118324

    Article  CAS  Google Scholar 

  59. Lu S-S, Zhang L-M, Dong Y-W, Zhang J-Q, Yan X-T, Sun D-F, Shang X, Chi J-Q, Chai Y-M, Dong B (2019) Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J Mater Chem A 7:16859–16866

    Article  CAS  Google Scholar 

  60. Rodney JD, Deepapriya S, Robinson MC, Raj CJ, Perumal S, Kim BC, Das SJ (2020) Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting. Int J Hydrog Energy 45:24684–24696

    Article  CAS  Google Scholar 

  61. Tian Y, Wang S, Velasco E, Yang Y, Cao L, Zhang L, Li X, Lin Y, Zhang Q, Chen L (2020) A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Iscience 23:100756

    Article  CAS  PubMed  Google Scholar 

  62. Nazar N, Manzoor S, Rehman Y, Bibi I, Tyagi D, Chughtai AH, Gohar RS, Najam-Ul-Haq M, Imran M, Ashiq MN (2022) Metal-organic framework derived CeO2/C nanorod arrays directly grown on nickel foam as a highly efficient electrocatalyst for OER. Fuel 307:121823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F.F., Nisa, M.U., Hassan, H.M.A. et al. Novel lanthanum sulfide–decorated zirconia nanohybrid for enhanced electrochemical oxygen evolution reaction. J Solid State Electrochem 26, 2171–2182 (2022). https://doi.org/10.1007/s10008-022-05220-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05220-z

Keywords

Navigation