Skip to main content
Log in

Electrochemical activity of various types of aqueous In(III) species at a mercury electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An interpretation framework is presented which provides a straightforward means to characterise the electrochemical reactivity of aqueous ions together with their various hydrolysed counterparts. Our novel approach bypasses the more laborious strategy of solving rigorously, for all relevant species, the complete set of Butler-Volmer equations coupled to diffusion differential equations. Specifically, we consider the spatial variable via a Koutecký-Koryta type of differentiation between nonlabile and labile zones adjacent to the electrode. The theory is illustrated by an assessment of the electrochemical reactivity of aqueous In(III) species based upon proper comparison between relevant time scales of the involved interfacial processes, i.e. diffusion, (de)protonation of inner-sphere water, dissociation/release of H2O and OH, and electron transfer. The analysis reveals that whilst all In(III) species are labile on the experimental timescale with respect to (de)protonation and (de)hydration, there are large differences in the rates of electron transfer between \( \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_6^{3+} \) and the various hydroxy species. Specifically, in the case of \( \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_6^{3+} \), the rate of electron transfer is so slow that it replaces the traditional Eigen rate-limiting water release step in the overall passage from hydrated In3+ to its reduced metallic form; in contrast, the In(III) hydroxy species display electrochemically reversible behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a :

distance of closest approach of ions (m)

A :

electrode surface area (m2)

c i :

concentration of species i (mol m−3)

\( {c}_{\mathrm{In},\mathrm{t}}^{\ast } \) :

total concentration of In(III) in the bulk aqueous medium (mol m−3)

D :

diffusion coefficient (m2 s−1)

e :

elementary charge (1.6×10−19 C)

E d :

deposition potential (V)

E d,1/2 :

half-wave deposition potential (V)

E 1/2 :

half-wave potential (V)

E 0′ :

formal potential (V)

F :

Faraday’s constant (96,485 C mol−1)

HMDE:

hanging mercury drop electrode

I :

ionic strength (mol m−3)

\( {I}_{\mathrm{d}}^{\ast } \) :

limiting value of the deposition current (A)

I s :

stripping current (A)

J dif :

diffusion-controlled flux from the bulk medium to the electrode surface (mol m−2 s−1)

J kin :

kinetically controlled flux in the reaction layer (mol m−2 s−1)

k :

Boltzmann constant (1.38×10−23 J K−1)

k a :

association rate constant (m3 mol−1 s−1)

k d :

dissociation rate constant (s−1)

k 0 :

electron transfer rate constant (m s−1)

\( {k}_{\mathrm{eff}}^0\kern-0.4em \) :

effective electron transfer rate constant (m s−1)

KK:

Koutecký-Koryta

K os :

stability constant for an outer-sphere reactant pair (m3 mol−1)

k w :

inner-sphere dehydration rate constant of hydrated metal ions (s−1)

L:

ligand

ℒ:

lability parameter (dimensionless)

m In :

charge transport coefficient for In in aqueous solution

n :

number of electrons transferred in the electrochemical reaction

N Av :

Avogadro number (6.022×1023 mol−1)

OHP:

outer Helmholtz plane

R :

gas constant (8.314 J K−1 mol−1)

SCE:

saturated calomel electrode

SSCP:

stripping chronopotentiometry at scanned deposition potential

t d :

deposition time (s)

T :

temperature (K)

V :

electrode volume (m3)

y :

nF(EdE0′)/RT

z :

charge on an ion

α :

charge transfer coefficient

β :

1 – α

\( {\beta}_1^{\ast } \) :

stability constant for the reaction \( \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_6^{3+}\rightleftharpoons \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_5{\left(\mathrm{OH}\right)}^{2+}+{\mathrm{H}}^{+} \)

\( {\beta}_2^{\ast } \) :

stability constant for the reaction \( \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_6^{3+}\rightleftharpoons \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_4{\left(\mathrm{OH}\right)}_2^{+}+2{\mathrm{H}}^{+} \)

\( {\beta}_3^{\ast } \) :

stability constant for the reaction \( \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_6^{3+}\rightleftharpoons \mathrm{In}{\left({\mathrm{H}}_2\mathrm{O}\right)}_3{\left(\mathrm{OH}\right)}_3^0+3{\mathrm{H}}^{+} \)

δ :

thickness of the diffusion layer in solution at the electrode/medium interface (m)

εε 0 :

dielectric permittivity of the aqueous solution (7×10−10 F m−1 at 293 K)

θ :

exp(y)

θ α :

exp(−αy)

θ β :

exp(βy)

κ −1 :

Debye layer thickness (screening length) in the bulk electrolyte medium (m)

λ :

thickness of the generalized reaction layer at the electrode/medium interface (m)

μ :

thickness of the conventional association reaction layer at the electrode/medium interface (m)

τ :

SCP transition (stripping) time (s)

τ d :

characteristic time constant of the SCP deposition process (s)

ψ OHP :

potential at the outer Helmholtz plane (V)

References

  1. Tuck DG (1983) Critical survey of stability constants of complexes of indium. Pure Appl Chem 55:1477–1528

    CAS  Google Scholar 

  2. Inouye S, Imai H (1960) Electrode kinetics of indium(III) at the dropping mercury electrode. Bull Chem Soc Jpn 33:149–152

    CAS  Google Scholar 

  3. Moorhead ED, MacNevin WM (1962) The polarographic behavior of indium in presence of chloride. Anal Chem 34:269–271

    CAS  Google Scholar 

  4. Engel AJ, Lawson J, Aikens DA (1965) Ligand-catalyzed polarographic reduction of indium(III) for determination of halides and certain organic sulfur and nitrogen compounds. Anal Chem 37:203–207

    CAS  Google Scholar 

  5. Losev VV, Molodov AI (1962) Einfluss der Säurekonzentration auf die Anodische Auflösung des Indiumamalgams. Electrochim Acta 6:81–91

    Google Scholar 

  6. Lawson JG, Aikens DA (1967) Mechanism and thermodynamics of the polarographic deposition of aquo In(III). J Electroanal Chem 15:193–209

    CAS  Google Scholar 

  7. Nazmutdinov RR, Zinkicheva TT, Tsirlina GA, Kuz’minova ZV (2005) Why does the hydrolysis of In(III) aquacomplexes make them electrochemically more active? Electrochim Acta 50:4888–4896

  8. White SJO, Hemond HF (2012) The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Crit Rev Environ Sci Technol 42:155–186

    CAS  Google Scholar 

  9. Tehrani MH, Companys E, Dago A, Puy J, Galceran J (2018) Free indium concentration determined with AGNES. Sci Total Environ 612:269–275

    CAS  PubMed  Google Scholar 

  10. Rotureau E, Pla-Vilanova P, Galceran J, Companys E, Pinheiro JP (2019) Towards improving the electroanalytical speciation analysis of indium. Anal Chim Acta 1052:57–64

    CAS  PubMed  Google Scholar 

  11. Tehrani MH, Companys E, Dago A, Puy J, Galceran J (2019) New methodology to measure low free indium (III) concentrations based on the determination of the lability degree of indium complexes. Assessment of In(OH)3 solubility product. J Electroanal Chem 847:113185

  12. Brun NR, Christen V, Furrer G, Fent K (2014) Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio). Environ Sci Technol 48:11679–11687

  13. Brun NR, Fields PD, Horsfield S, Mirbahai L, Ebert D, Colbourne JK, Fent K (2019) Mixtures of aluminum and indium induce more than additive and toxicogenomic responses in Daphnia magna. Environ Sci Technol 53:1639–1649

  14. Syun C-H, Chien P-H, Huang C-C, Jiang P-Y, Juang K-W, Lee D-Y (2017) The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicol Environ Saf 135:32–39

  15. Chang H-F, Wang S-L, Lee D-C, Hsiao SS-Y, Hashimoto Y, Yeh K-C (2020) Assessment of indium toxicity to the model plant Arabidopsis. J Hazard Mater 387:121983

    PubMed  Google Scholar 

  16. Yang G, Hadioui M, Wang Q, Wilkinson KJ (2019) Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii. Environ Pollut 250:40–46

  17. van Leeuwen HP, Town RM, Buffle J, Cleven RFMJ, Davison W, Puy J, van Riemsdijk WH, Sigg L (2005) Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol 39:8545–8556

    PubMed  Google Scholar 

  18. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New York

    Google Scholar 

  19. Zelić M, Mlakar M, Branica M (1994) Influence of perchlorates and halides on the electrochemical propertes of indium(III). Anal Chim Acta 289:299–306

    Google Scholar 

  20. Ashworth C, Firsch G (2017) Complexation equilibria of indium in aqueous chloride, sulfate and nitrate solutions: an electrochemical investigation. J Solut Chem 46:1928–1940

    CAS  Google Scholar 

  21. Jain DS, Gaur JN (1967) Reduction of indium at the dropping mercury electrode in lithium chloride medium. Electrochim Acta 12:413–416

    CAS  Google Scholar 

  22. van Leeuwen HP, Town RM (2002) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features. J Electroanal Chem 536:129–140

  23. Town RM, van Leeuwen HP (2003) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 2. Determination of metal ion speciation parameters. J Electroanal Chem 541:51–65

    CAS  Google Scholar 

  24. van Leeuwen HP, Town RM (2003) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 3. Irreversible electrode reactions. J Electroanal Chem 556:93–102

    Google Scholar 

  25. Maeda M, Ohtaki H (1977) An X-ray diffraction study on the structure of the aqua indium(III) ion in the perchlorate solution. Bull Chem Soc Jpn 50:1893–1894

    CAS  Google Scholar 

  26. Lindqvist-Reis P, Munoz-Páez A, Díaz-Moreno S, Pattanaik S, Persson I, Sandström M (1998) The structure of the hydrated gallium(III), indium(III), and chromium(III) ions in aqueous solution. A large angle X-ray scattering and EXAFS study. Inorg Chem 37:6675–6683

    CAS  PubMed  Google Scholar 

  27. Neely JW (1971) Oxygen-17 nuclear magnetic resonance studies of the first hydration sphere of diamagnetic metal ions in aqueous solution. PhD thesis, Lawrence Berkeley National Laboratory

  28. Eigen M (1963) Fast elementary steps in chemical reaction mechanisms. Pure Appl Chem 6:97–115

    CAS  Google Scholar 

  29. Fuoss RM (1958) Ionic association. III The equilbrium between ion pairs and free ions. J Am Chem Soc 80:5059–5061

    CAS  Google Scholar 

  30. van Leeuwen HP, Town RM, Buffle J (2007) Impact of ligand protonation in Eigen-type metal complexation kinetics in aqueous systems. J Phys Chem A 111:2115–2121

    PubMed  Google Scholar 

  31. van Leeuwen HP (2008) Eigen kinetics in surface complexation of aqueous metal ions. Langmuir 24:11718–11721

    PubMed  Google Scholar 

  32. van Leeuwen HP, Town RM (2009) Outer-sphere and inner-sphere ligand protonation in metal complexation kinetics: the lability of EDTA complexes. Environ Sci Technol 43:88–93

    PubMed  Google Scholar 

  33. Eigen M, De Maeyer L (1955) Die Geschwindigkeit der Neutralisationsreaktion. Naturwissen 42:413–414

    CAS  Google Scholar 

  34. Eigen M, De Maeyer L (1958) Self-dissociation and protonic charge transport in water and ice. Proc R Soc London Ser A 247:505–533

    CAS  Google Scholar 

  35. Stillinger FH (1978) Proton transfer reactions and kinetics in water. In: Theoretical chemistry: advances and perspectives, vol. 3, p 177-234

  36. Light TS, Licht S, Bevilacqua AC, Morash KR (2005) The fundamental conductivity and resistivity of water. Electrochem Solid-State Lett 8:E16–E19

    CAS  Google Scholar 

  37. Eigen M, Kruse W (1963) Über den Einfluβ von Wassersoffbrücken-Struktur und elektrostatischer Wechselwirkung auf die Geschwindigkeit protolytischer Reaktionen. Z Naturforsch B 18:857–865

    Google Scholar 

  38. De Maeyer L, Kustin K (1963) Fast reactions in solution. Annu Rev Phys Chem 14:5–34

    Google Scholar 

  39. Alekseev VG, Myasnikova EN, Nikol’skii VM (2013) Hydrolysis constants of Al3+, Ga3+, and In3+ ions in 0.1 M KNO3 solution. Russ J Inorg Chem 58:1593–1596

  40. Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and applications. Wiley, New York

    Google Scholar 

  41. Eigen M, Wilkins RG (1965) The kinetics and mechanisms of formation of metal complexes. Adv Chem 49:55–80

    CAS  Google Scholar 

  42. Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  43. Duval JFL, van Leeuwen HP (2012) Rates of ionic reactions with charged nanoparticles in aqueous media. J Phys Chem A 116:6443–6451

    CAS  PubMed  Google Scholar 

  44. Koutecký L, Koryta J (1961) The general theory of polarographic kinetic currents. Electrochim Acta 3:318–339

    Google Scholar 

  45. Koryta J, Dvorak J, Kavan L (1993) Principles of electrochemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  46. van Leeuwen HP, Puy J, Galceran J, Cecília J (2002) Evaluation of the Koutecký-Koryta approximation for voltammetric currents generated by metal complex systems with various labilities. J Electroanal Chem 526:10–18

    Google Scholar 

  47. van Leeuwen HP, Town RM (2004) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 4. The kinetic current regime. J Electroanal Chem 561:67–74

    Google Scholar 

  48. Town RM, van Leeuwen HP (2004) Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP). Aust J Chem 57:983–992

    CAS  Google Scholar 

  49. van Leeuwen HP, Town RM (2006) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 7. Kinetic currents for ML2 complexes. J Electroanal Chem 587:148–154

  50. van Leeuwen HP, Duval JFL, Pinheiro JP, Blust R, Town RM (2017) Chemodynamics and bioavailability of metal ion complexes with nanoparticles in aqueous media. Environ Sci: Nano 4:2108–2133

    Google Scholar 

  51. Heyrovský J, Kuta J (1965) Principles of polarography. Academic Press, New York

    Google Scholar 

  52. Zhang Z, Buffle J, van Leeuwen HP (2007) Roles of dynamic metal speciation and membrane permeability in metal flux through lipophilic membranes: general theory and experimental validation with nonlabile complexes. Langmuir 23:5216–5226

    CAS  PubMed  Google Scholar 

  53. Zhang Z, Buffle J (2009) Interfacial metal flux in ligand mixtures, 1. The revisited reaction layer approximation: theory and examples of applications. J Phys Chem A 113:6562–6571

    CAS  PubMed  Google Scholar 

  54. van Leeuwen HP (2011) Steady-state DGT fluxes of nanoparticulate metal complexes. Environ Chem 8:525–528

    Google Scholar 

  55. Harris WR, Messori L (2002) A comparative study of aluminium(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin. Coord Chem Rev 228:237–262

    CAS  Google Scholar 

  56. Brown PL, Ellis J, Sylva RN (1982) The hydrolysis of metal ions. Part 4. Indium(III). J Chem Soc Dalton Trans 1911-1914

  57. Biryuk EA, Nazarenko VA, Ravitskaya RV (1969) Spectrophotometric determination of hydrolysis constants of indium ions. Zh Neorg Khim 14:965–970

    CAS  Google Scholar 

  58. Tanaka N, Tamamushi R (1964) Kinetic parameters of electrode reactions. Electrochim Acta 9:963–989

    CAS  Google Scholar 

  59. Rudolph WW, Fischer D, Tomney MR, Pye CC (2004) Indium(III) hydration in aqueous solutions of perchlorate, nitrate and sulfate. Raman and infrared spectroscopic studies and ab-initio molecular orbital calculations of indium(III)-water clusters. Phys Chem Chem Phys 6:5145–5155

    CAS  Google Scholar 

  60. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501

    CAS  PubMed  Google Scholar 

  61. Town RM, van Leeuwen HP (2001) Fundamental features of metal ion determination by stripping chronopotentiometry. J Electroanal Chem 509:58–65

    CAS  Google Scholar 

  62. van Leeuwen HP, Town RM (2003) Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ Sci Technol 37:3945–3952

    PubMed  Google Scholar 

  63. Town RM, van Leeuwen HP (2004) Depletive stripping chronopotentiometry: a major step forward in electrochemical stripping techniques for metal ion speciation analysis. Electroanalysis 16:458–471

    CAS  Google Scholar 

  64. Town RM, van Leeuwen HP (2006) Comparative evaluation of scanned stripping techniques: SSCP vs. SSV. Croat ChemActa 79:15–25

    CAS  Google Scholar 

  65. Town RM, van Leeuwen HP (2019) Stripping chronopotentiometry at scanned deposition potential (SSCP): an effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. J Electroanal Chem 853:113530

    CAS  Google Scholar 

  66. Piercy R (1975) Some aspects of the electrochemistry of indium. PhD Thesis, Loughborough University of Technology, UK

  67. Town RM, Pinheiro JP, Domingos R, van Leeuwen HP (2005) Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 6: Features of irreversible complex systems. J Electroanal Chem 580:57–67

    CAS  Google Scholar 

  68. Niki K, Mizota H (1976) Effect of specific adsorbed anions on the electrode kinetics of the V(III)/V(II) and Eu(III)/Eu(II) couples. J Electroanal Chem 72:307–317

    CAS  Google Scholar 

  69. van Leeuwen HP, Town RM (2002) Elementary features of depletive stripping chronopotentiometry. J Electroanal Chem 535:1–9

    Google Scholar 

  70. DeFord DD, Hume DN (1951) The determination of consecutive formation constants of complex ions from polarographic data. J Am Chem Soc 73:5321–5322

    CAS  Google Scholar 

Download references

Availability of data and material

All data analysed during this study are included in this manuscript.

Funding

RMT conducted this research within the EnviroStress and EXPOSOME centers of excellence funded by Universiteit Antwerpen’s Bijzonder Onderzoeksfonds (BOF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raewyn M. Town.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Town, R.M., Duval, J.F.L. & van Leeuwen, H.P. Electrochemical activity of various types of aqueous In(III) species at a mercury electrode. J Solid State Electrochem 24, 2807–2818 (2020). https://doi.org/10.1007/s10008-020-04607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04607-0

Keywords

Navigation