Skip to main content
Log in

Flash light synthesis of noble metal nanoparticles for electrochemical applications: silver, gold, and their alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The synthesis of noble metal nanoparticles (i.e., silver and gold) for electrochemical applications has been widely studied using mainly wet synthesis chemical methods or electrochemical deposition methods. In this work, we propose a single-step flash photochemical method for synthesizing noble metal nanoparticles (i.e., silver, gold, and Au:Ag) in solution for electrochemical applications. The method is based on the intense pulsed radiation emitted from a xenon flashlamp, which induce the reduction of metal cations in solution to form metallic nanoparticles. The present method is based on the selective light absorption of the metal precursor salts combined with the decomposition of polyvinylpyrrolidone added to the solution. This approach can be termed as flash light synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bizzotto F, Quinson J, Zana A, Kirkensgaard JJK, Dworzak A, Oezaslan De M, Arenz M (2019) Ir nanoparticles with ultrahigh dispersion as oxygen evolution reaction (OER) catalysts: synthesis and activity benchmarking †. Cite this Catal Sci Technol 9:6345

    CAS  Google Scholar 

  3. Jović M, Hidalgo-Acosta JC, Lesch A, Costa Bassetto V, Smirnov E, Cortés-Salazar F, Girault HH (2018) Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors. J Electroanal Chem 819:384–390

    Google Scholar 

  4. Hwang HJ, Joo SJ, Kim HS (2015) Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering. ACS Appl Mater Interfaces 7(45):25413–25423

    CAS  PubMed  Google Scholar 

  5. Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53:3558–3586

    CAS  Google Scholar 

  6. Pedersen CM, Escudero-Escribano M, Velázquez-Palenzuela A, Christensen LH, Chorkendorff I, Stephens IEL (2015) Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochim Acta 179:647–657

    CAS  Google Scholar 

  7. Greene MK, Richards DA, Nogueira JCF, Campbell K, Smyth P, Fernández M, Scott CJ, Chudasama V (2017) Forming next-generation antibody-nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chem Sci 9:79–87

    PubMed  PubMed Central  Google Scholar 

  8. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    CAS  Google Scholar 

  9. Niu S, Sun Y, Sun G, Rakov D, Li Y, Ma Y, Chu J, Xu P (2019) Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl Energy Mater 2:3927–3935

    CAS  Google Scholar 

  10. Pasqualeti AM, Olu PY, Chatenet M, Lima FHB (2015) Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal 5:2778–2787

    CAS  Google Scholar 

  11. Hatakeyama Y, Onishi K, Nishikawa K (2011) Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv 1:1815–1821

    CAS  Google Scholar 

  12. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N (2016) Catalysis: photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(80):797–801

    CAS  PubMed  Google Scholar 

  13. De H, Weerasekera A, Silvero MJ, Regis Correa Da Silva D, Scaiano JC (2016) A database on the stability of silver and gold nanostructures for applications in biology and biomolecular sciences †. Biomater Sci 5:89

    Google Scholar 

  14. McGilvray KL, Decan MR, Wang D, Scaiano JC (2006) Facile photochemical synthesis of unprotected aqueous gold nanoparticles. J Am Chem Soc 128(50):15980–15981

    CAS  PubMed  Google Scholar 

  15. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132(6):1825–1827

    CAS  PubMed  Google Scholar 

  16. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  17. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6(9):692–697

    CAS  PubMed  Google Scholar 

  18. Cao YY, Takeyasu N, Tanaka T, Duan XM, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5(10):1144–1148

    CAS  PubMed  Google Scholar 

  19. Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Google Scholar 

  20. Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM (2010) Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloids Surfaces A Physicochem Eng Asp 364:19–25

    CAS  Google Scholar 

  21. Wang G, Xiao L, Huang B, Ren Z, Tang X, Zhuang L, Lu J (2012) AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. J Mater Chem 22:15769–15774

    CAS  Google Scholar 

  22. Pletcher D, Urbina RI (1997) Electrodeposition of rhodium. Part 1. Chloride solutions. J Electroanal Chem 421:137–144

    CAS  Google Scholar 

  23. Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 7:792–793

    Google Scholar 

  24. Cui H-W, Jiu J-T, Nagao S, Sugahara T, Suganuma K, Uchida H, Schroder KA (2014) Ultra-fast photonic curing of electrically conductive adhesives fabricated from vinyl ester resin and silver micro-flakes for printed electronics. RSC Adv 4:15914–15922

    CAS  Google Scholar 

  25. Draper GL, Dharmadasa R, Staats ME, Lavery BW, Druffel T (2015) Fabrication of elemental copper by intense pulsed light processing of a copper nitrate hydroxide ink. ACS Appl Mater Interfaces 7(30):16478–16485

    CAS  PubMed  Google Scholar 

  26. Druffel T, Dharmadasa R, Lavery BW, Ankireddy K (2018) Intense pulsed light processing for photovoltaic manufacturing. Sol Energy Mater Sol Cells 174:359–369

    CAS  Google Scholar 

  27. Lesch A (2018) Print-light-synthesis of platinum nanostructured indium-tin-oxide electrodes for energy research. Adv Mater Technol 3:1700201

    Google Scholar 

  28. Lesch A, Maye S, Jović M, Gumy F, Tacchini P, Girault HH (2016) Analytical sensing platforms with inkjet printed electrodes. Adv Mater - TechConnect Briefs 2016:121–124

    Google Scholar 

  29. Bananezhad A, Jović M, Villalobos LF, Agrawal KV, Ganjali MR, Girault HH (2019) Large-scale fabrication of flexible solid-state reference electrodes. J Electroanal Chem 847:113241

    CAS  Google Scholar 

  30. Jović M, Zhu Y, Lesch A, Bondarenko A, Cortés-Salazar F, Gumy F, Girault HH (2017) Inkjet-printed microtiter plates for portable electrochemical immunoassays. J Electroanal Chem 786:69–76

    Google Scholar 

  31. Costa Bassetto V, Mensi M, Oveisi E, Girault HH, Lesch A (2019) Print-Light-Synthesis of Ni and NiFe-nanoscale catalysts for oxygen evolution. ACS Appl Energy Mater 2:6322–6331

    CAS  Google Scholar 

  32. Bastús NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17):11098–11105

    PubMed  Google Scholar 

  33. Martínez CJ, Chequer AN, González LJ, Cordova T (2013) Alternative metodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectrophotometry. Nanosci Nanotechnol 2:184–189

    Google Scholar 

  34. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19):4855–4861

    CAS  PubMed  Google Scholar 

  35. Gomes JF, Garcia AC, Pires C, Ferreira EB, Albuquerque RQ, Tremiliosi-Filho G, Gasparotto LHS (2014) Impact of the AuAg NPs composition on their structure and properties: a theoretical and experimental investigation. J Phys Chem C 118:28868–28875

    CAS  Google Scholar 

  36. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    CAS  Google Scholar 

  37. Garcia AG, Lopes PP, Gomes JF, Pires C, Ferreira EB, Lucena RGM, Gasparotto LHS, Tremiliosi-Filho G (2014) Eco-friendly synthesis of bimetallic AuAg nanoparticles. New J Chem 38:2865–2873

    CAS  Google Scholar 

  38. Lu L, Burkey G, Halaciuga I, Goia DV (2013) Core-shell gold/silver nanoparticles: synthesis and optical properties. J Colloid Interface Sci 392:90–95

    CAS  PubMed  Google Scholar 

  39. Huang T (2017) Electrodeposited silver-gold alloy as a sensor for paracetamol determination. Int J Electrochem Sci 12:11419–11427

    CAS  Google Scholar 

  40. Xiao X, Si P, Magner E (2016) An overview of dealloyed nanoporous gold in bioelectrochemistry. Bioelectrochemistry 109:117–126

    CAS  PubMed  Google Scholar 

  41. Komoda M, Shitanda I, Hoshi Y, Itagaki M (2019) Instantaneously usable screen-printed silver/silver sulfate reference electrode with long-term stability. Electrochem Commun 103:133–137

    CAS  Google Scholar 

  42. Saw EN, Grasmik V, Rurainsky C, Epple M, Tschulik K (2016) Electrochemistry at single bimetallic nanoparticles - using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss 193:327–338

    CAS  PubMed  Google Scholar 

  43. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, De Wael K (2016) Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosensors 4:1–11

    Google Scholar 

  44. Oh GH, Hwang HJ, Kim HS (2017) Effect of copper oxide shell thickness on flash light sintering of copper nanoparticle ink. RSC Adv 7:17724–17731

    CAS  Google Scholar 

  45. Bauer C, Abid JP, Girault HH (2006) Role of adsorbates on dynamics of hot-electron (type I and II) thermalization within gold nanoparticles. Comptes Rendus Chim 9:261–267

    CAS  Google Scholar 

  46. Bauer C, Abid JP, Girault HH (2005) Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles. Chem Phys 319:409–421

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Emad Oveisi from the Interdisciplinary Centre for Microscopy (CIME), École Polytechnique Fédérale de Lausanne for the assistance in the transmission electron microscopy and the XXII SIBEE organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert H. Girault.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa Bassetto, V., Oliveira Silva, W., Pereira, C.M. et al. Flash light synthesis of noble metal nanoparticles for electrochemical applications: silver, gold, and their alloys. J Solid State Electrochem 24, 1781–1788 (2020). https://doi.org/10.1007/s10008-020-04521-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04521-5

Keywords

Navigation