Skip to main content
Log in

Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 composited with Ti3C2Tx MXene nanosheets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li1.2Ni0.13Co0.13Mn0.54O2/Ti3C2Tx (LMR/TC) composite materials have been synthesized through mixing LMR particles with TC nanosheets. SEM result shows that most LMR particles are anchored on the surface of the Ti3C2Tx nanosheets. Such a structure can short the diffusion pathway for both the electron and lithium ions, enhancing electronic and ionic conductivities. Meanwhile, the composite structure keeps much stable during charge/discharge processes, leading to an enhanced cycling performance of the cathode. The LMR/TC (5 wt% Ti3C2Tx) composite electrode delivers an initial discharge capacity of 279.9 mA h g−1 at 0.1 C with coulombic efficiency of 81.8% and the capacity can maintain 248 mA h g−1 after 100 cycles with capacity retention of 85.7%. In contrast, the initial coulombic efficiency and the capacity retention after 100 cycles at same conditions of the pristine LMR electrode are only 67.1% and 67.6%, respectively. The composited cathode also shows an enhanced rate capacity compared to the pristine LMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu G, Qi X, Hu K, Lai X, Zhang X, Du K, Peng Z, Cao Y (2018) A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries. Electrochim Acta 265:391–399

    Article  CAS  Google Scholar 

  2. Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R, Xia D (2018) A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 30(16):1707255

    Article  CAS  Google Scholar 

  3. Chang M, Wang H, Zheng Y, Li N, Chen S, Wan Y, Yuan F, Shao W, Xu S (2018) Surface modification of hollow microsphere Li1.2Ni1/3Co1/3Mn1/3O2 cathode by coating with CoAl2O4. J Solid State Electrochem 23:607–613

    Article  CAS  Google Scholar 

  4. Xu H, Chen Y, Li Y, Kong L, Li H, Xu C, Su Q, Ren M (2018) Synthesis of single-crystal magnesium-doped spinel lithium manganate and its applications for lithium-ion batteries. J Solid State Electrochem 22(12):3735–3742

    Article  CAS  Google Scholar 

  5. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7(6):1601284

    Article  CAS  Google Scholar 

  6. Chen JJ, Li ZD, Xiang HF, Wu WW, Guo X, Wu YC (2014) Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. J Solid State Electrochem 19:1027–1035

    Article  CAS  Google Scholar 

  7. Li ZD, Zhang YC, Xiang HF, Ma XH, Yuan QF, Wang QS, Chen CH (2013) Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J Power Sources 240:471–475

    Article  CAS  Google Scholar 

  8. Zhang LL, Chen JJ, Cheng S, Xiang HF (2016) Enhanced electrochemical performances of Li1.2Ni0.2Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries. Ceram Int 42(1):1870–1878

    Article  CAS  Google Scholar 

  9. Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv Energy Mater 5(13):1500274

    Article  CAS  Google Scholar 

  10. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7(23):13014–13021

    Article  CAS  PubMed  Google Scholar 

  11. Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H (2017) Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett 17(3):1670–1677

    Article  CAS  PubMed  Google Scholar 

  12. Shi PC, Guo JP, Liang X, Cheng S, Zheng H, Wang Y, Chen CH, Xiang HF (2018) Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method. Carbon 126:507–513

    Article  CAS  Google Scholar 

  13. Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yu Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2(17):6792

    Article  CAS  Google Scholar 

  14. Liu Z, Guo R, Li F, Zheng M, Wang B, Li T, Luo Y, Meng L (2018) Reduced graphene oxide bridged, TiO2 modified and Mn3O4 intercalated Ti3C2Tx sandwich-like nanocomposite as a high performance anode for enhanced lithium storage applications. J Alloys Compd 762:643–652

    Article  CAS  Google Scholar 

  15. Shen C, Cao Y, Zhou A, Hu Q, Qin G, Yang Z, Liu X, Wang L (2018) Novel Li4Ti5O12/Ti3C2Tx nanocomposite as a high rate anode material for lithium ion batteries. J Alloys Compd 735:530–535

    Article  CAS  Google Scholar 

  16. Wang Y, Li Y, Qiu Z, Wu X, Zhou P, Zhou T, Zhao J, Miao Z, Zhou J, Zhuo S (2018) Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem A 6(24):11189–11197

    Article  CAS  Google Scholar 

  17. Li X, Qian Y, Liu T, Cao F, Zang Z, Sun X, Sun S, Niu Q, Wu J (2018) Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets. J Mater Sci 53(15):11078–11090

    Article  CAS  Google Scholar 

  18. Seteni B, Rapulenyane N, Ngila JC, Mpelane S, Luo H (2017) Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J Power Sources 353:210–220

    Article  CAS  Google Scholar 

  19. Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, Lelyukh P, Escobedo L, Cullen DK, Lucas TH, Gogotsi Y, Vitale F (2018) Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12(10):10419–10429

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Yang T, Han Y, Song D, Shi X, Zhang L, Bie L (2017) Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with the fast lithium-ion conductor Li-La-Ti-O. J Power Sources 364:272–279

    Article  CAS  Google Scholar 

  21. Chen Q, Luo L, Wang L, Xie T, Dai S, Yang Y, Li Y, Yuan M (2018) Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries. J Alloys Compd 735:1778–1786

    Article  CAS  Google Scholar 

  22. Jiang C, Zou Z (2018) Sheet-like Li1.2Mn0.54Ni0.16Co0.10O2 prepared by glucose-urea bubbling and post-annealing process as high capacity cathode of Li-ion batteries. Electrochim Acta 269:196–203

    Article  CAS  Google Scholar 

  23. Ren M, Yang M, Liu W, Li M, Su L, Wu X, Wang Y (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321

    Article  CAS  Google Scholar 

  24. Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L (2015) Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries. Electrochim Acta 173:7–16

    Article  CAS  Google Scholar 

  25. Liu Y, Yang Z, Li J, Niu B, Yang K, Kang F (2018) A novel surface-heterostructured Li1.2Ni0.13Co0.13Mn0.54O2@Ce0.8Sn0.2O2−σ cathode material for Li-ion batteries with improved initial irreversible capacity loss. J Mater Chem A 6(28):13883–13893

    Article  CAS  Google Scholar 

  26. Wang Y, Gu H-T, Song J-H, Feng Z-H, Zhou X-B, Zhou Y-N, Wang K, Xie J-Y (2018) Suppressing Mn reduction of Li-rich Mn-based cathodes by F-doping for advanced lithium-ion batteries. J Phys Chem C 122(49):27836–27842

    Article  CAS  Google Scholar 

  27. Li H, Zhang S, Wei X, Yang P, Jian Z, Meng J (2016) Glucose-assisted combustion synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials with superior electrochemical performance for lithium-ion batteries. RSC Adv 6(82):79050–79057

    Article  CAS  Google Scholar 

  28. Ding W, Cui X, Lei J, Lin X, Zhao S, Wu Q-H, Zheng M, Dong Q (2018) Hollow spherical lithium-rich layered oxide cathode material with suppressed voltage fading. Electrochim Acta 264:260–268

    Article  CAS  Google Scholar 

  29. Zhao T, Gao X, Wei Z, Guo K, Wu F, Li L, Chen R (2018) Three-dimensional Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. J Alloys Compd 757:16–23

    Article  CAS  Google Scholar 

  30. Wu X, Wang Z, Yu M, Xiu L, Qiu J (2017) Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 29(24):1607017

    Article  CAS  Google Scholar 

  31. Hou X, Huang Y, Ma S, Zou X, Hu S, Wu Y (2015) Facile hydrothermal method synthesis of coralline-like Li1.2Ni0.13Co0.13Mn0.54O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Mater Res Bull 63:256–264

    Article  CAS  Google Scholar 

  32. Luo D, Fang S, Yang L, Hirano S-i (2017) High-rate and long-life Li1.18Mn0.56Ni0.13Co0.13O2 cathodes of Li-ion batteries. J Alloys Compd 723:243–251

    Article  CAS  Google Scholar 

  33. Yu R, Zhang Z, Jamil S, Chen J, Zhang X, Wang X, Yang Z, Shu H, Yang X (2018) Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl Mater Interfaces 10(19):16561–16571

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 7(6):1601066

    Article  CAS  Google Scholar 

  35. Lee H, Lim SB, Kim JY, Jeong M, Park YJ, Yoon WS (2018) Characterization and control of irreversible reaction in Li-rich cathode during the initial charge process. ACS Appl Mater Interfaces 10(13):10804–10818

    Article  CAS  PubMed  Google Scholar 

  36. Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv Funct Mater 28(37):1803392

    Article  CAS  Google Scholar 

  37. Li J, Xu C, Zhao J, Chen J, Cao C (2018) Li-rich nanoplates of Li1.2Ni0.13Co0.13Mn0.54O2 layered oxide with exposed {010} planes as a high-performance cathode for lithium-ion batteries. J Alloys Compd 734:301–306

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program under Contract No. 2017YFA0402800 and the National Natural Science Foundation of China under Contract Nos. U1732160 and 11504380.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bangchuan Zhao or Shuai Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Zhao, B., Zhou, J. et al. Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 composited with Ti3C2Tx MXene nanosheets. J Solid State Electrochem 23, 1419–1428 (2019). https://doi.org/10.1007/s10008-019-04232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04232-6

Keywords

Navigation