Skip to main content
Log in

Self-electrochemiluminescent CdTe quantum dots: one-pot synthesis, characterization, and electrochemical properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel self-electrochemiluminescent (self-ECL) nanomaterial, CdTe quantum dots, was prepared by the one-pot method using 2-diethylaminoethanethiol hydrochloride (DEAET) as capping agent and co-reactant (CdTe@DEAET QDs). Effects of various experimental variables such as Cd-to-Te ratio, pH value, and DEAET-to-Cd ratio on the optical and electrochemical properties have been systematically investigated. The results indicate that the as-prepared CdTe QDs show excellent size-dependent optical and self-ECL properties under optimal conditions. Moreover, the successful preparation of CdTe@DEAT QDs with morphology and structure were characterized by TEM, XRD, FT-IR, and XPS in this work. All these results corroborate that this preparation method of QDs presents a simple and easily up-scalable method for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo Z, Hao T, Duan J, Wang S, Wei D (2012) Electrochemiluminescence immunosensor based on graphene-CdS quantum dots-agarose composite for the ultrasensitive detection of alpha fetoprotein. Talanta 89:27–32. https://doi.org/10.1016/j.talanta.2011.11.017

    Article  CAS  Google Scholar 

  2. Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. https://doi.org/10.1039/b923679c

    Article  CAS  Google Scholar 

  3. Wang L, Luo D, Qin D, Shan D, Lu X (2015) Cathodic electrochemiluminescence of a CdSe/ZnS QDs-modified glassy carbon electrode and its application in sensing of Pb2+. Anal Methods 7(4):1395–1400. https://doi.org/10.1039/C4AY02304H

    Article  CAS  Google Scholar 

  4. Zhang X, Ding SN (2016) General strategy to fabricate electrochemiluminescence sandwich-type nanoimmunosensors using CdTe@ZnS quantum dots as luminescent labels and Fe3O4@SiO2 nanoparticles as magnetic separable scaffolds. ACS Sens 1(4):358–365. https://doi.org/10.1021/acssensors.5b00242

    Article  CAS  Google Scholar 

  5. Liu X, Ju H (2008) Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal Chem 80(14):5377–5382. https://doi.org/10.1021/ac8003715

    Article  CAS  Google Scholar 

  6. Zhang X, Ding SN (2017) Graphite paper-based bipolar electrode electrochemiluminescence sensing platform. Biosens Bioelectron 94:47–55. https://doi.org/10.1016/j.bios.2017.02.033

    Article  Google Scholar 

  7. Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY (2015) Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis. Anal Chem 87(19):9520–9531. https://doi.org/10.1021/acs.analchem.5b00497

    Article  CAS  Google Scholar 

  8. Zou G, Ju H (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76(23):6871–6876. https://doi.org/10.1021/ac049012j

    Article  CAS  Google Scholar 

  9. Badocco D, Zanon F, Pastore P (2006) Use of Ru(bpy)3 2+/tertiary aliphatic amine system fast potential pulses electrochemiluminescence at ultramicroelectrodes coupled to electrochemical data for evaluating Eo of amine redox couples. Electrochim Acta 51(28):6442–6450. https://doi.org/10.1016/j.electacta.2006.04.029

    Article  CAS  Google Scholar 

  10. Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence 69: the Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited—a new route involving TPrA·+ cation radicals. J Am Chem Soc 124(48):14478–14485. https://doi.org/10.1021/ja027532v

    Article  CAS  Google Scholar 

  11. Pastore P, Badocco D, Zanon F (2006) Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy)3 2+ with tertiary aliphatic amines. Electrochim Acta 51(25):5394–5401. https://doi.org/10.1016/j.electacta.2006.02.009

    Article  CAS  Google Scholar 

  12. Liao N, Zhuo Y, Chai YQ, Xiang Y, Han J, Yuan R (2013) Reagentless electrochemiluminescent detection of protein biomarker using graphene-based magnetic nanoprobes and poly-L-lysine as co-reactant. Biosens Bioelectron 45:189–194. https://doi.org/10.1016/j.bios.2013.02.005

    Article  CAS  Google Scholar 

  13. Huang Y, Fang M, Zou G, Zhang B, Wang H (2016) Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr3 nanocrystals. Nano 8:18734–18739

    CAS  Google Scholar 

  14. Irkham, Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y (2016) Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O8 2− at boron-doped diamond electrodes. J Am Chem Soc 138(48):15636–15641. https://doi.org/10.1021/jacs.6b09020

    Article  CAS  Google Scholar 

  15. Zhao M, Chen AY, Huang D, Zhuo Y, Chai YQ, Yuan R (2016) Cu nanoclusters: novel Electrochemiluminescence emitters for bioanalysis. Anal Chem 88(23):11527–11532. https://doi.org/10.1021/acs.analchem.6b02770

    Article  CAS  Google Scholar 

  16. Zhou L, Huang J, Yu B, You T (2016) A novel self-enhanced electrochemiluminescence immunosensor based on hollow Ru-SiO2@PEI nanoparticles for NSE analysis. Sci Rep 6(1):22234. https://doi.org/10.1038/srep22234

    Article  CAS  Google Scholar 

  17. Carrara S, Arcudi F, Prato M, De Cola L (2017) Amine-rich nitrogen-doped carbon nanodots as platform for self-enhancing electrochemiluminescence. Angew Chem 56(17):4757–4761. https://doi.org/10.1002/anie.201611879

    Article  CAS  Google Scholar 

  18. Han TT, Dong H, Ren LL, Bao N, Wu W, Ding SN (2017) Self-electrochemiluminescence of CdTe nanocrystals capped with 2-diethylaminoethanethiol. Chem Commun 53(39):5388–5391. https://doi.org/10.1039/C7CC01955F

    Article  CAS  Google Scholar 

  19. Wang T, Wang D, Padelford WJ, Jiang J, Wang G (2016) Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid Au nanoclusters. J Am Chem Soc 138(20):6380–6383. https://doi.org/10.1021/jacs.6b03037

    Article  CAS  Google Scholar 

  20. Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314(5797):274–278. https://doi.org/10.1126/science.1128045

    Article  CAS  Google Scholar 

  21. Sheng Z, Han H, Hu X, Chi C (2010) One-step growth of high luminescence CdTe quantum dots with low cytotoxicity in ambient atmospheric conditions. Dalton Trans 39(30):7017–7020. https://doi.org/10.1039/c002618b

    Article  CAS  Google Scholar 

  22. Hua L, Han H, Zhang X (2009) Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of L-cysteine. Talanta 77(5):1654–1659. https://doi.org/10.1016/j.talanta.2008.09.061

    Article  CAS  Google Scholar 

  23. Liu X, Jiang H, Lei J, Ju H (2007) Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem 79(21):8055–8060. https://doi.org/10.1021/ac070927i

    Article  CAS  Google Scholar 

  24. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmuller A, Gaponik N (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J Phys Chem B 109(3):1094–1100. https://doi.org/10.1021/jp0460801

    Article  CAS  Google Scholar 

  25. Li YC, Zhong HZ, Li R, Zhou Y, Yang CH, Li YF (2006) High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals. Adv Funct Mater 16(13):1705–1716. https://doi.org/10.1002/adfm.200500678

    Article  CAS  Google Scholar 

  26. Wang Q, Zhou X, Fang T, Liu P, Li X, Min X (2013) One-step growth of high-quality CdTe quantum dots via hydrothermal method and cytotoxicity evaluation. Powder Technol 247:81–86. https://doi.org/10.1016/j.powtec.2013.07.007

    Article  CAS  Google Scholar 

  27. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3(8):1053–1055. https://doi.org/10.1021/nl034354a

    Article  CAS  Google Scholar 

  28. Wang Z, Li J, Liu B, Hu J, Yao X, Li J (2005) Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B 109(49):23304–23311. https://doi.org/10.1021/jp055023k

    Article  CAS  Google Scholar 

  29. Zhang X, Wang L, Guo J, Yang W (2012) Stable water-dispersed CdTe nanocrystals dependent on stoichiometric ratio of cd to Te precursor. Chin J Chem 30(5):1031–1039. https://doi.org/10.1002/cjoc.201100672

    Article  Google Scholar 

  30. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185. https://doi.org/10.1021/jp025541k

    Article  CAS  Google Scholar 

  31. Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R (2016) Self-enhanced electrochemiluminescence nanorods of tris(bipyridine) ruthenium (II) derivative and its sensing application for detection of N-acetyl-β-D-glucosaminidase. Anal Chem 88(4):2258–2265. https://doi.org/10.1021/acs.analchem.5b03954

    Article  CAS  Google Scholar 

  32. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. https://doi.org/10.1021/cr068083a

    Article  CAS  Google Scholar 

  33. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860. https://doi.org/10.1021/cm034081k

    Article  CAS  Google Scholar 

  34. Miyake M, Inui H, Murase K, Hirato T, Awakura Y (2004) Comparison of microstructures of CdTe layers electrodeposited from basic ammoniacal and acidic sulfate electrolytes. J Electrochem Soc 151(3):C168–C175. https://doi.org/10.1149/1.1643739

    Article  CAS  Google Scholar 

  35. Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta 169(1-2):109–115. https://doi.org/10.1007/s00604-010-0323-3

    Article  CAS  Google Scholar 

  36. Testa G, Fontana L, Venditti I, Fratoddi I (2016) Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies. Beilstein J Nanotechnol 7:1822–1828. https://doi.org/10.3762/bjnano.7.175

    Article  CAS  Google Scholar 

  37. Thangadurai P, Balaji S, Manoharan PT (2008) Surface modification of CdS quantum dots using thiols-structural and photophysical studies. Nanotechnology 19(43):435708–435716. https://doi.org/10.1088/0957-4484/19/43/435708

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21575022, 21535003), the National High Technology Research and Development Program (“863” Program) of China (2015AA020502), the Fundamental Research Funds for the Central Universities (2242016 K41055), Qing Lan Project, and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (1107047002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Nian Ding.

Electronic supplementary material

ESM 1

(DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, TT., Ding, SN. Self-electrochemiluminescent CdTe quantum dots: one-pot synthesis, characterization, and electrochemical properties. J Solid State Electrochem 22, 1047–1054 (2018). https://doi.org/10.1007/s10008-017-3845-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3845-3

Keywords

Navigation