Skip to main content

Advertisement

Log in

Growing ordered arrays of vertically aligned copolymer nanowires for supercapacitors with high stability

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this report, we present a novel platform to study the formation of delicate ordered vertically aligned copolymer nanowires array with EDOT and Py as the initial source. The resultant samples exhibit a specific capacitance of 187 F g−1 with the current of 0.1 A g−1 in 0.1 M LiClO4 aqueous electrolyte. When the current was set as 8 A g−1, the energy density was 16.9 W h kg−1 and the power density was 5480 W kg−1 with good cycling stability (remained stable after 5000 cycles). The multicomponent copolymer nanowire array has great potential to become a versatile and efficient material for next generation of endurable electrochemical supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi:10.1142/9789814317665_0022

    Article  Google Scholar 

  2. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166. doi:10.1002/smll.201290048/full

    Article  CAS  Google Scholar 

  3. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696 http://pubs.rsc.org/en/content/articlepdf/2015/cs/c5cs00362h

    Article  CAS  Google Scholar 

  4. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire Electrodes for Electrochemical Energy Storage Devices. Chem Rev 114:11828–11862

    Article  CAS  Google Scholar 

  5. Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors. ACS Nano 4:3889–3896. doi:10.1021/cr500177a

    Article  CAS  Google Scholar 

  6. Kayser LV, Vollmer M, Welnhofer M, Krikcziokat H, Meerholz K, Arndtsen BA (2016) Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes. J Am Chem Soc 138:10516–10521. doi:10.1021/cr500177a?journalCode=chreay

    Article  CAS  Google Scholar 

  7. Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:28–62. doi:10.1002/adma.200903328/pdf

    Article  CAS  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 http://www.nature.com/nmat/journal/v7/n11/abs/nmat2297.html?lang=en

    Article  CAS  Google Scholar 

  9. Chen N, Qian X, Lin H, Liu H, Li Y (2012) Growing uniform copolymer nanowire arrays for high stability and efficient field emission. J Mater Chem 22:11068–11072 http://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm16368c#!divAbstract

    Article  CAS  Google Scholar 

  10. Chen N, Huang C, Yang W, Chen S, Liu H, Li Y, Li Y (2010) Growth Control for Architecture Molecular Conductor of Low Dimension Nanostructures. J Phys Chem C 114:12982–12986. doi:10.1021/jp103911x

    Article  CAS  Google Scholar 

  11. Chen N, Qian X, Lin H, Liu H, Li Y, Li Y (2011) Synthesis and characterization of axial heterojunction inorganic-organic semiconductor nanowire arrays. Dalton Trans 40:10804–10808 http://pubs.rsc.org/en/content/articlelanding/2011/dt/c1dt10926j#!divAbstract

    Article  CAS  Google Scholar 

  12. Chen N, Chen S, Ouyang C, Yu Y, Liu T, Li Y, Liu H, Li Y (2013) Electronic logic gates from three-segment nanowires featuring two p-n heterojunctions. NPG Asia Mater 5:e59 http://www.nature.com/am/journal/v5/n8/full/am201336a.html

    Article  CAS  Google Scholar 

  13. Chen N, Liu C, Zhang J, Liu H (2012) Synthesis of (4-hexyloxybenzoyl)butylsaure methyl amide/poly(3-hexylthiophene) heterojunction nanowire arrays. ACS Appl Mater Interfaces 4:4841–4845. doi:10.1021/am301174a?journalCode=aamick

    Article  CAS  Google Scholar 

  14. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent Advancement of Nanostructured Carbon for Energy Applications. Chem Rev 115:5159–5223. doi:10.1021/cr5006217

    Article  CAS  Google Scholar 

  15. Hu L, Hecht DS, Grüner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844. doi:10.1021/cr9002962

    Article  CAS  Google Scholar 

  16. Yin Z, Zheng Q (2012) Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview. Adv Energy Mater 2:179–218. doi:10.1002/aenm.201100560/full

    Article  CAS  Google Scholar 

  17. Peng X, Peng L, Wu C, Xie Y (2014) Two Dimensional Nanomaterials for Flexible Supercapacitors. Chem Soc Rev 43:3303–3323 http://pubs.rsc.org/en/content/articlelanding/2014/cs/c3cs60407a#!divAbstract

    Article  CAS  Google Scholar 

  18. Kim BC, Ko JM, Wallace GG (2008) A novel capacitor material based on Nafion-doped polypyrrole. J Power Sources 177:665–668 http://www.sciencedirect.com/science/article/pii/S0378775307026262

    Article  CAS  Google Scholar 

  19. Ingram MD, Staesche H, Ryder KS (2004) ‘Activated’ polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics 169:51–57 http://www.sciencedirect.com/science/article/pii/S0167273804000578

    Article  CAS  Google Scholar 

  20. Zhan ZB, Lei Y (2014) Sub-100-nm Nanoparticle Arrays with Perfect Ordering and Tunable and Uniform Dimensions Fabricated by Combining Nanoimprinting with Ultrathin Alumina Membrane Technique. ACS Nano 8:3862–3868. doi:10.1021/nn500713h

    Article  CAS  Google Scholar 

  21. Muthulakshmi B, Kalpana D, Pitchumani S, Renganathan NG (2006) Electrochemical deposition of polypyrrole for symmetric supercapacitors. J Power Sources 2:1533–1537 http://www.sciencedirect.com/science/article/pii/S0378775305013972

  22. Han G, Yuan J, Shi G, Wei F (2005) Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474:64–69 http://www.sciencedirect.com/science/article/pii/S0040609004011174

    Article  CAS  Google Scholar 

  23. Jo K, Gu M, Kim BS (2015) Ultrathin Supercapacitor Electrode Based on Reduced Graphene Oxide Nanosheets Assembled with Photo-Crosslinkable Polymer: Conversion of Electrochemical Kinetics in Ultrathin Films. Chem Mater 27:7982–7989. doi:10.1021/acs.chemmater.5b03296?journalCode=cmatex

    Article  CAS  Google Scholar 

  24. Bai X, Hu X, Zhou S (2015) Flexible Supercapacitors Based on 3D Conductive Network Electrodes of Poly (3,4-ethylenedioxythiophene)/Non-woven Fabric Composites. RSC Adv 5:43941–43948 http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/C5RA07297B#!divAbstract

    Article  CAS  Google Scholar 

  25. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31. doi:10.1002/smll.201301991/full

    Article  CAS  Google Scholar 

  26. Zhao Y, Song L, Zhang Z, Qu L (2013) Stimulus-responsive graphene systems towards actuator applications. Energy Environ Sci 6:3520–3536 http://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee42812e#!divAbstract

    Article  CAS  Google Scholar 

  27. Chen X, Zhu X, Xiao Y, Yang X (2015) PEDOT/g-C3N4 binary electrode material for supercapacitors. J Electroanal Chem 743:99–104 http://www.sciencedirect.com/science/article/pii/S1572665715000612

    Article  CAS  Google Scholar 

  28. Zainudeen UL, Careem MA, Skaarup S (2008) PEDOT and PPy conducting polymer bilayer and trilayer actuators. Sensor Actuators B Chem 134:467–470 http://www.sciencedirect.com/science/article/pii/S0925400508003717

    Article  CAS  Google Scholar 

  29. Okuzaki H, Suzuki H, Ito T (2009) Electrically driven PEDOT/PSS actuators. Synth Met 159:2233–2236 http://www.sciencedirect.com/science/article/pii/S0379677909003932

    Article  CAS  Google Scholar 

  30. Guix M, Mayorga-Martinez CC, Merkoçi A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114:6285–6322. doi:10.1021/cr400273r?journalCode=chreay

    Article  CAS  Google Scholar 

  31. Yan J, Wang Q, Wei T, Fan Z (2014) Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv Energy Mater 4:1300816. doi:10.1002/aenm.201300816/full

    Article  Google Scholar 

  32. Li C, Bai H, Shi G (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409 http://pubs.rsc.org/en/content/articlelanding/2009/cs/b816681c#!divAbstract

    Article  CAS  Google Scholar 

  33. Fattahi P, Yang G, Kim G, Reza Abidian M (2014) A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Adv Mater 26:1846–1885. doi:10.1002/adma.201304496/full

    Article  CAS  Google Scholar 

  34. Shi Y, Yu G (2016) Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversion. Chem Mater 28:2466–2477. doi:10.1021/acs.chemmater.5b04879

    Article  CAS  Google Scholar 

  35. Zhou G, Li F, Cheng HM (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338 http://pubs.rsc.org/en/Content/ArticleLanding/2014/EE/C3EE43182G#!divAbstract

    Article  CAS  Google Scholar 

  36. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206. doi:10.1002/adma.201002647/full

    Article  CAS  Google Scholar 

  37. Zhang L, Shi GQ (2011) Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. J Phys Chem C 115:17206–17212. doi:10.1021/jp204036a

    Article  CAS  Google Scholar 

  38. Yu CJ, Masarapu C, Rong JP, Wei BQ, Jiang HQ (2009) Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater 21:4793–4797. doi:10.1002/adma.200901775/full

    Article  CAS  Google Scholar 

  39. Yan YF, Cheng QL, Wang GC, Li CZ (2011) Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources 196:7835–7840 http://www.sciencedirect.com/science/article/pii/S0378775311007038

    Article  CAS  Google Scholar 

  40. Wang KP, Teng HS (2006) The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin. Carbon 44:3218–3225 http://www.sciencedirect.com/science/article/pii/S0008622306003630

    Article  CAS  Google Scholar 

  41. Chen W, Rakhi RB, Hu LB, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172. doi:10.1021/nl2023433

    Article  CAS  Google Scholar 

  42. Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF (2011) High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Adv Mater 23:791–795. doi:10.1002/adma.201003658/full

    Article  CAS  Google Scholar 

  43. Chen Z, Wen J, Yan CZ, Rice L, Sohn H, Shen MQ, Cai M, Dunn B, Lu YF (2011) High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles. Adv Energy Mater 1:551–556. doi:10.1002/aenm.201100114/full

    Article  CAS  Google Scholar 

  44. Lang XY, Hirata A, Fujita T, Chen MW (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236 http://www.nature.com/nnano/journal/v6/n4/abs/nnano.2011.13.html

    Article  CAS  Google Scholar 

  45. Bhandari H, Choudhary V, Dhawan SK (2009) Synergistic effect of copolymers composition on the electrochemical, thermal, and electrical behavior of 5-lithiosulphoisophthalic acid doped poly(aniline-co-2-isopropylaniline): synthesis, characterization, and applications. Polym Adv Technol 20:1024–1034. doi:10.1002/pat.1359/full

    Article  CAS  Google Scholar 

  46. Zhang J, Wu G, Huang C, Niu Y, Chen C, Chen Z, Yang K, Wang Y (2012) Unique Multifunctional Thermally-Induced Shape Memory PPDO-PTMEG Multiblock Copolymers Based on the Synergistic Effect of Two Segments. J Phys Chem B 116:5835–5845. doi:10.1021/jp211953q

    CAS  Google Scholar 

  47. Sun Z, Zhang B, Bian X, Feng L, Zhang H, Duan R, Sun J, Pang X, Chen W, Chen X (2015) Synergistic effect of PLA–PBAT–PLA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends. RSC Adv 5:73842–73849 http://pubs.rsc.org/is/content/articlelanding/2015/ra/c5ra11019j#!divAbstract

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Jilin University Bethune program (No. 2015329), Health Department of Jilin provincial youth research project (No. 2015Q002), NSFC (21671020, 21301018), Education Department of Jilin Province science and technology research project (2015 No. 528), Education Department of Jilin Province (No. JJKH20170865KJ), Beijing Natural Science Foundation (2172049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Chen, N., Liu, M. et al. Growing ordered arrays of vertically aligned copolymer nanowires for supercapacitors with high stability. J Solid State Electrochem 21, 3121–3127 (2017). https://doi.org/10.1007/s10008-017-3637-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3637-9

Keywords

Navigation