Skip to main content
Log in

Mesoporous soft solid electrolyte-based quaternary ammonium salt

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel mesoporous soft solid electrolyte was successfully prepared from tetrabutylammonium hexafluorophosphate, propylene carbonate, and 200–300 nm fumed silica. The electrolyte had the highest conductivity of 5.63 mS cm−1 at 24.9 °C. Fumed silica formed a three-dimensional network through hydrogen bonds between silica particles and solvent resulting in a mesoporous channel-like structure observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The pore size distribution was ranging from 20 to 300 nm with an average pore size of 280 nm characterized by N2 adsorption-desorption isotherm from a surface area and pore size analyzer. Analysis using cyclic voltammograms showed that the mesoporous structures allowed electrolyte ions and redox probe, namely ferrocene to move effectively in the soft solid electrolyte. We found that ferrocene and ferrocenium redox probes had diffusion coefficient values of 1.05 × 10−6 and 1.09 × 10−6 cm2 s−1, respectively. The properties of the mesoporous soft solid electrolyte-based large quaternary ammonium cation showed to be a good candidate for electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery. Electrochem Commun 5:594–598

    Article  CAS  Google Scholar 

  2. Zhang SS, Foster D, Read J (2011) The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Electrochim Acta 56:1283–1287

    Article  CAS  Google Scholar 

  3. Lan CJ, Lee CY, Chin TS (2007) Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochim Acta 52:5407–5416

    Article  CAS  Google Scholar 

  4. Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  CAS  Google Scholar 

  5. Mysyk R, Pinero ER, Pernak J, Beguin F (2009) Confinement of symmetric tetraalkylammonium ions in nanoporous carbon electrodes of electric double-layer capacitors. J Phys Chem C 113:13443–13449

    Article  CAS  Google Scholar 

  6. Wang H, Yoshio M (2012) Feasibility of quaternary alkyl ammonium-intercalated graphite as negative electrode materials in electrochemical capacitors. J Power Sources 200:108–112

    Article  CAS  Google Scholar 

  7. Ozawa H, Okuyama Y, Arakawa H (2014) Dependence of the efficiency improvement of black-dye based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cation in electrolyte solutions. ChemPhysChem 15:1201–1206

    Article  CAS  Google Scholar 

  8. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:1167–1175

    Article  CAS  Google Scholar 

  9. Santa-Nokki H, Busi S, Kallioinen J, Lahtinen M, Korppi-Tommola J (2007) Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells. J Photochem Photobiol, A 186:29–33

    Article  CAS  Google Scholar 

  10. Wang H, Yoshio M (2008) Effect of cation on the performance of AC/graphite capacitor. Electrochem Commun 10:382–386

    Article  CAS  Google Scholar 

  11. Mousavi MPS, Kashefolgheta S, Stein A, Buhlmann P (2016) Electrochemical stability of quaternary ammonium cations: an experimental and computational study. J Electrochem Soc 163:H74–H80

    Article  CAS  Google Scholar 

  12. Utley J (1997) Trends in organic electrosynthesis. Chem Soc Rev 26:157–167

    Article  CAS  Google Scholar 

  13. Kang J, Li W, Wang X, Lin Y, Xiao X, Fang S (2003) Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochim Acta 48:2487–2491

    Article  CAS  Google Scholar 

  14. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander BE (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochim Acta 109:609–616

    Article  CAS  Google Scholar 

  15. Aziz MF, Buraidah MH, Careem MA, Arof AK (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I and Bu4N+I) for dye-sensitize solar cell application. Electrochim Acta 182:217–223

    Article  CAS  Google Scholar 

  16. Lai YH, Chiu CW, Chen JG, Wang CC, Lin JJ, Lin KF, Ho KC (2009) Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Sol Energy Mater Sol Cells 93:1860–1864

    Article  CAS  Google Scholar 

  17. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  18. Lee KM, Suryanarayanan V, Ho KC (2008) A photo-physical and electrochemical impedence spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J of Power Sources 185:1605–1612

    Article  CAS  Google Scholar 

  19. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590

    Article  CAS  Google Scholar 

  20. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Article  CAS  Google Scholar 

  21. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963–1968

    Article  CAS  Google Scholar 

  22. Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3-SiO2 Ionics 16:255-262.

  23. Chatterjee B, Kulshrestha N, Gupta PN (2016) Nano composite solid polymer electrolytes based on biogradable polymers starch and polyvinylalcohol. Measurement 82:490–499

    Article  Google Scholar 

  24. Ortega PFR, Trigueiro JPC, Silva GG, Lavall RL (2016) Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2. PVDF and imidazolium ionic liquid Electrochim Acta 188:809–817

    Article  CAS  Google Scholar 

  25. Huber B, Rossrucker L, Sundermeyer J, Roling B (2013) Ion transport properties of ionic liquid-based polyelectrolytes. Solid State Ionics 247-248:15–21

    Article  CAS  Google Scholar 

  26. Ramesh S, Lu SC, Morris E (2012) Towards magnesium ion conducting poly(vinylidenefluoride-hexafluoropropylene)-based solid polymer electrolytes with great prospects: ionic conductivity and dielectric behaviours. J Taiwan Inst Chem Eng 43:806–812

    Article  CAS  Google Scholar 

  27. Wang XL, Cai Q, Fan LZ, Hua T, Lin YH, Nan CW (2008) Gel based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries. Electrochim Acta 53:8001–8007

    Article  CAS  Google Scholar 

  28. Geng Y, Wang X, Chen W, Cai Q, Nan C, Li H (2009) Synthesis, characterization and application of novel bicontinuous mesoporous silica with hierarchical pore structure. Mater Chem and Phys 116:254–260

    Article  CAS  Google Scholar 

  29. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:26332(1-10).

  30. Lu C, Hoang TKA, Doan TNL, Acton M, Zhao H, Guan W, Chen P (2016) Influence of different silica gelling agents on the performance of aqueous gel electrolytes. J Ind Eng Chem 42:101–106

    Article  CAS  Google Scholar 

  31. Sun X, Zhao J (2016) Concentration optimization of fumed silica as gelator in lead-acid batteries. Electrochemistry 84:578–584

    Article  CAS  Google Scholar 

  32. Sun X, Zhao J, Chen T, Liu X (2016) Colloidal particle size of fumed silica dispersed in solution and the particle size effect on silica gelation and some electrochemical behavior in gelled electrolyte. J Solid State Electrochem 20:657–664

    Article  CAS  Google Scholar 

  33. Walls HJ, Fedkiw PS, Zawodzinski TA Jr, Khan SA (2003) Ion transport in silica nanocomposite electrolytes. J Electrochem Soc 150:E165–E174

    Article  CAS  Google Scholar 

  34. Singh B, Kumar R, Sekhon SS (2005) Conductivity and viscosity behavior of PMMA based gels and nano dispersed gels: role of dielectric constant of solvent. Solid State Ionics 176:1577–1583

    Article  CAS  Google Scholar 

  35. Chen MQ, Chen HY, Shu D, Li AJ, Finlow DE (2008) Effects of preparation condition and particle size distribution on fumed silica gel valve-regulated lead-acid batteries performance. J Power Sources 181:161–171

    Article  CAS  Google Scholar 

  36. Ahmad S, Ahmad S, Agnihotry SA (2005) Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies. J Power Sources 140:151–156

    Article  CAS  Google Scholar 

  37. Kumar D, Hashmi SA (2010) Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  38. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander BE (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochim Acta 109:609–616

    Article  CAS  Google Scholar 

  39. Li Z, Su G, Gao D, Wang X, Li X (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639

    Article  CAS  Google Scholar 

  40. Wu CG, Lu MI, Tsai CC, Chuang HJ (2006) PVdF-HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electroltyes. J Power Sources 159:295–300

    Article  CAS  Google Scholar 

  41. Petrowsky M, Ismail M, Glatzhofer DT, Frech R (2013) Mass and charge transport in cyclic carbonates: implications for improved lithium ion battery electrolytes. J Phys Chem B 117:5963–5970

    Article  CAS  Google Scholar 

  42. Noviandri I, Brown KN, Fleming DS, Gulyas PT, Lay PA, Masters AF, Philips L (1999) The decamethylferrocenium/decamethylferrocene redox couple: a superior redox standard to the ferrocenium/ferrocene redox couple for studying solvent effects on the thermodynamics of electron transfer. J Phys Chem B 103:6713–6722

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications, 2nd edn. John Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This work was funded by Development and Promotion of Science Technology Talents (DPST) Research Grant 008/2559. The authors would like to thank Dr. Udom Asawapirom and Prof. Supapan Seraphin for fruitful discussions on gel electrolytes and SEM characterization. The authors would like to thank Dr. Sanchai Kuboon and Nanomaterials for Energy and Catalysis Laboratory (NEC), NANOTEC, for providing a surface area and pore size analyzer and Nano Characterization Laboratory (NCL), NANOTEC, for providing TEM instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuleekorn Chotsuwan.

Additional information

Thitiporn Chokanarojwong and Sunisa Dongbang contributed to this work equally.

Electronic supplementary material

ESM 1

(PDF 1625 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chotsuwan, C., Boonrungsiman, S., Chokanarojwong, T. et al. Mesoporous soft solid electrolyte-based quaternary ammonium salt. J Solid State Electrochem 21, 3011–3019 (2017). https://doi.org/10.1007/s10008-017-3632-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3632-1

Keywords

Navigation