Skip to main content

Advertisement

Log in

Fabrication and characterization of poly 2-napthol orange film modified electrode and its application to selective detection of dopamine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The present work is based on the use of a redox mediator containing an azo group for the selective determination of dopamine in the presence of uric acid and ascorbic acid by electrochemical method. A modified electrode was prepared by electrochemical polymerization of the poly 2-napthol orange film (P2NO) on the paraffin wax-impregnated graphite electrode (PIGE) by applying potential between −0.6 and 0.8 V at scan rate of 50 mV s−1 for 30 segments. The modified P2NO film electrode was characterized by ATR-IR spectroscopy, FE-SEM, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), hydrodynamic voltammetry (HDV), and chronoamperometry (CA). The P2NO film modified electrode exhibited selective determination of dopamine in the presence of uric acid and ascorbic acid, and the electrocatalytic activity for oxidation of dopamine was excellent. The linear range for the determination of dopamine was 0.6 to 250 μM with a limit of detection of 0.13 μM. The modified P2NO electrode showed good stability and reproducibility. The modified electrode was used for real sample analysis such as human blood serum, rat blood serum, and pharmaceutical samples (dopamine hydrochloride injection). The results obtained were found to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zare HR, Rajabzadeh N, Nasirizadeh N, Ardakani MM (2006) Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J Electroanal Chem 589:60–69

    Article  CAS  Google Scholar 

  2. Ouyang X, Luo L, Ding Y, Liu B, Xu D, Huang A (2015) Simultaneous determination of uric acid, dopamine and ascorbic acid based on poly (bromocresol green) modified glassy carbon electrode. J Electroanal Chem 748:1–7

    Article  CAS  Google Scholar 

  3. Guo Z, Huang GQ, Li WZY, Xu XF (2015) Graphene oxide-Ag/poly-l-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. J Electroanal Chem 759:113–121

    Article  CAS  Google Scholar 

  4. Caudle WM, Colebrooke RE, Emson PC, Miller GW (2008) Altered vesicular dopamine storage in Parkinson’s disease: a premature demise. Trends in neurosci 31:303–308

    Article  CAS  Google Scholar 

  5. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  Google Scholar 

  6. Ganesh PS, Swamy BK (2015) Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly (glutamic acid) modified carbon paste electrode. J Electroanal Chem 752:17–24

    Article  CAS  Google Scholar 

  7. Wang G, Meng J, Liu H, Jiao S, Zhang W, Chen D, Fang B (2008) Determination of uric acid in the presence of ascorbic acid with hexacyanoferrate lanthanum film modified electrode. Electrochim Acta 53:2837–2843

    Article  CAS  Google Scholar 

  8. Xu Y, Wei X, Li H, Zheng X, Lu K, Liu X, Yan Y (2016) Boric acid functionalized ratiometric fluorescence probe for sensitive and on-site naked eye determination of dopamine based on two different kinds of quantum dots. RSC Adv 6:72715–72721

    Article  CAS  Google Scholar 

  9. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium (IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181:671–677

    Article  CAS  Google Scholar 

  10. Duan H, Li L, Wang X, Wang Y, Li J, Luo C (2015) A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochim Acta Part A: Mol and Biomol Spectrosc 139:374–379

    Article  CAS  Google Scholar 

  11. Ferry B, Gifu EP, Sandu I, Denoroy L, Parrot S (2014) Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection. J Chromatogr B 951:52–57

    Article  Google Scholar 

  12. Dawei QI, Zhang Q, Wanhong ZHOU, Jingjing ZHAO, Zhang B, Yunfei SHA, Zhiqing PANG (2016) Quantification of dopamine in brain microdialysates with high-performance liquid chromatography–tandem mass spectrometry. Anal Sci 32:419–424

    Article  Google Scholar 

  13. Naccarato A, Gionfriddo E, Sindona G, Tagarelli A (2014) Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal Chim Acta 810:17–24

    Article  CAS  Google Scholar 

  14. Kovac A, Somikova Z, Zilka N, Novak M (2014) Liquid chromatography–tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy. Talanta 119:284–290

    Article  CAS  Google Scholar 

  15. Weng Y, Zeng H, Nakagawa Y, Ikeda S, Chen F, Nakajima H, Uchiyama K (2013) Separation and determination of dopamine and epinephrine in serum by capillary electrophoresis with inkjet introduction system. Chromatographia 34:33–40

    Article  CAS  Google Scholar 

  16. Özcan A, İlkbaş S (2015) Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Anal Chim Acta 891:312–320

    Article  Google Scholar 

  17. Taei M, Hasanpour F, Tavakkoli N, Bahrameiann M (2015) Electrochemical characterization of poly (fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid. J Mol Liq 211:353–362

    Article  CAS  Google Scholar 

  18. Premkumar J, Khoo SB (2005) Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes. J Electroanal Chem 576:105–112

    Article  CAS  Google Scholar 

  19. Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int J Electrochem Sci 6:2149–2161

    CAS  Google Scholar 

  20. Liu Q, Zhu X, Huo Z, He X, Liang Y, Xu M (2012) Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97:557–562

    Article  CAS  Google Scholar 

  21. Wei W, Zhang Y, Zhou Q, Zhao W, Ren J, Zheng J (2016) Ion selective gate based on silica/gold cavity array for electrochemical detection of dopamine. Colloids and Surfaces A: Physico chem Eng Aspects 489:305–310

    Article  CAS  Google Scholar 

  22. Li Y, Song H, Zhang L, Zuo P, Ye BC, Yao J, Chen W (2016) Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens Bioelectron 78:308–314

    Article  CAS  Google Scholar 

  23. Zhang L, Shi Z, Lang Q (2011) Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  24. Yang S, Li G, Yang R, Xia M, Qu L (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15:1909–1918

    Article  CAS  Google Scholar 

  25. Wang Y, Bi C (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using poly (tyrosine)/functionalized multi-walled carbon nanotubes composite film modified electrode. J Mol Liq 177:26–31

    Article  CAS  Google Scholar 

  26. Ardakani MM, Talebi A, Naeimi H, Barzoky MN, Taghavinia N (2009) Fabrication of modified TiO2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine. J Solid State Electrochem 13:1433–1440

    Article  CAS  Google Scholar 

  27. Zhang L, Wang L (2013) Poly (2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite. J Solid State Electrochem 17:691–700

    Article  CAS  Google Scholar 

  28. Zhou Y, He M, Huang C, Dong S, Zheng J (2012) A novel and simple biosensor based on poly (indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J Solid State Electrochem 16:2203–2210

    Article  CAS  Google Scholar 

  29. Jin GP, Lin XQ, Ding YF (2006) Glassy carbon electrodes modified with mixed covalent monolayers of choline, glycine, and glutamic acid for the determination of phenolic compounds. J Solid State Electrochem 10:987–994

    Article  CAS  Google Scholar 

  30. Shieh YT, Lu YT, Wang TL, Yang CH, Lin RH (2014) Electrocatalytic activities of nafion/CdSe/self-doped polyaniline composites to dopamine, uric acid, and ascorbic acid. J Solid State Electrochem 18:975–984

    Article  CAS  Google Scholar 

  31. Li NB, Ren W, Luo HQ (2008) Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly (caffeic acid)-modified glassy carbon electrode. J Solid State Electrochem 12:693–699

    Article  CAS  Google Scholar 

  32. Şen M, Tamer U, Pekmez NÖ (2012) Carbon nanotubes/alizarin red S–poly (vinylferrocene) modified glassy carbon electrode for selective determination of dopamine in the presence of ascorbic acid. J Solid State Electrochem 16:457–463

    Article  Google Scholar 

  33. Li H, Wang X, Yu Z (2014) Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J Solid State Electrochem 18:105–113

    Article  CAS  Google Scholar 

  34. Zheng X, Zhou X, Ji X, Lin R, Lin W (2013) Simultaneous determination of ascorbic acid, dopamine and uric acid using poly (4-aminobutyric acid) modified glassy carbon electrode. Sensors and Actuators B: Chemi 178:359–365

    Article  CAS  Google Scholar 

  35. Dai H, Wang N, Wang D, Zhang X, Ma H, Lin M (2016) Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole and graphene oxide. Microchimi Acta 183:3053–3059

    Article  CAS  Google Scholar 

  36. Taei M, Jamshidi M (2014) Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly (Adizol Black B)-modified glassy carbon electrode. J Solid State Electrochem 18:673–683

    Article  CAS  Google Scholar 

  37. Dai Lam T, Tram PTN, Binh NH, Viet PH (2011) Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified nafion/single wall carbon nanotube/poly (3-methylthiophene) glassy carbon electrodes. Colloids Surf B: Biointerfaces 88:764–770

    Article  Google Scholar 

  38. Liu X, Ou X, Lu Q, Zhang J, Chen S, Wei S (2014) Electrochemical sensor based on overoxidized dopamine polymer and 3,4,9,10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Adv 4:42632–42637

    Article  CAS  Google Scholar 

  39. Scholz F, Lange B (1992) Abrasive stripping voltammetry—an electrochemical solid state spectroscopy of wide applicability. Trends Anal Chem 11:359–367

    Article  CAS  Google Scholar 

  40. Babu RS, Prabhu P, Narayanan SS (2016) Facile immobilization of potassium-copper hexacyanoferrate nanoparticles using a room-temperature ionic liquid as an ionic binder and its application towards BHA determination. J Solid State Electrochem 20:1575–1583

    Article  CAS  Google Scholar 

  41. Yuan Y, Ahammad AS, Xu GR, Kim S, Lee JJ (2008) Poly (thionine)-modified GC electrode for simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. Bull Kor Chem Soc 29:1883–1884

    Article  CAS  Google Scholar 

  42. Marinho MIC, Cabral MF, Mazo LH (2012) Is the poly (methylene blue)-modified glassy carbon electrode an adequate electrode for the simple detection of thiols and amino acid-based molecules? J Electroanal Chem 685:8–14

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  44. Wei Y, Luo L, Ding Y, Liu X, Chu Y (2013) A glassy carbon electrode modified with poly (eriochrome black T) for sensitive determination of adenine and guanine. Microchim Acta 180:887–893

    Article  CAS  Google Scholar 

  45. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  46. Prabakar SR, Sakthivel C, Narayanan SS (2011) Hg (II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 85:290–297

    Article  CAS  Google Scholar 

  47. Li XB, Rahman MM, Xu GR, Lee JJ (2015) Highly sensitive and selective detection of dopamine at poly (chromotrope 2B)-modified glassy carbon electrode in the presence of uric acid and ascorbic acid. Electrochim Acta 173:440–447

    Article  CAS  Google Scholar 

  48. Reddy YVM, Rao VP, Reddy AVB, Lavanya M, Venu M, Madhavi G (2015) Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands reagent) modified carbon paste electrode. Mater Sci and Eng C 57:378–386

    Article  Google Scholar 

  49. Lin X, Zhang Y, Chen W, Wu P (2007) Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sensors and Actuators B Chem 122:309–314

    Article  CAS  Google Scholar 

  50. Ciolkowski EL, Maness KM, Cahill PS, Wightman RM, Evans DH, Fosset B, Amatore C (1994) Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes. Anal Chem 66:3611–3617

    Article  CAS  Google Scholar 

  51. Balamurugan A, Chen SM (2007) Poly (3, 4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal Chim Acta 596:92–98

    Article  CAS  Google Scholar 

  52. Corona-Avendaño S, Ramírez-Silva MT, Palomar-Pardavé M, Hernández-Martínez L, Romero-Romo M, Alarcón-Ángeles G (2010) Influence of CTAB on the electrochemical behavior of dopamine and on its analytic determination in the presence of ascorbic acid. J Appl Electrochem 40:463–474

    Article  Google Scholar 

  53. Colín-Orozco E, Ramírez-Silva MT, Corona-Avendano S, Romero-Romo M, Palomar-Pardavé M (2012) Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7. Electrochim Acta 85:307–313

    Article  Google Scholar 

  54. Lin X, Zhuang Q, Chen J, Zhang S, Zheng Y (2007) Electrocatalytic property of poly-chromotrope 2B modified glassy carbon electrode on dopamine and its application. Sensors and Actuators B Chem 125:240–245

    Article  CAS  Google Scholar 

  55. Zhang R, Jin GD, Chen D, Hu XY (2009) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode. Sensors and Actuators B Chem 138:174–181

    Article  CAS  Google Scholar 

  56. Song W, Chen Y, Xu J, Tian DB (2010) A selective voltammetric detection for dopamine using poly (gallic acid) film modified electrode. Chin Chem Lett 21:349–352

    Article  CAS  Google Scholar 

  57. Rocha LS, Carapuça HM (2006) Ion-exchange voltammetry of dopamine at nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Bioelectrochemistry 69:258–266

    Article  CAS  Google Scholar 

  58. Yang L, Liu S, Zhang Q, Li F (2012) Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@ polyaniline core–shell nanocomposites modified electrode. Talanta 89:136–141

    Article  CAS  Google Scholar 

  59. Lin L, Chen J, Yao H, Chen Y, Zheng Y, Lin X (2008) Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans blue) modified glassy carbon electrode. Bioelectrochemistry 73:11–17

    Article  CAS  Google Scholar 

  60. Sroysee W, Chairam S, Amatatongchai M, Jarujamrus P, Tamuang S, Pimmongkol S, Somsook E (2016) Poly (m-ferrocenylaniline) modified carbon nanotubes-paste electrode encapsulated in nafion film for selective and sensitive determination of dopamine and uric acid in the presence of ascorbic acid. J Saudi Chem Soc. doi:10.1016/j.jscs.2016.02.003

    Article  Google Scholar 

  61. Mani V, Govindasamy M, Chen SM, Karthik R, Huang ST (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance from University Grants Commission (UGC)–New Delhi, India, and the National Center for Nanoscience and Nanotechnology for Recording FE-SEM Techniques and National Center for Ultrafast Process for Recording ATR-IR Spectra, University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Sriman Narayanan.

Electronic supplementary material

ESM 1

(DOCX 1577 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, R., Deepa, P. & Narayanan, S.S. Fabrication and characterization of poly 2-napthol orange film modified electrode and its application to selective detection of dopamine. J Solid State Electrochem 21, 3567–3578 (2017). https://doi.org/10.1007/s10008-017-3604-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3604-5

Keywords

Navigation