Skip to main content
Log in

Measurements of HOMO-LUMO levels of poly(3-hexylthiophene) thin films by a simple electrochemical method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Though poly(3-hexylthiophene) (P3HT) is one of the most commonly used polymers in organic solar cells, a broad range of values, derived from cyclic voltammetry (CV), has been reported for the lowest unoccupied molecular orbital (LUMO) position (from −3.53 to −2.70 eV); contrastingly, the highest occupied molecular orbital (HOMO) position is reported in a narrow range (from −4.92 to −5.20 eV). As a consequence of this wide distribution for the LUMO position, most researchers choose to use electrochemical techniques for determining only the HOMO position, and estimate the LUMO position by adding the experimental optical band-gap value. Here, three different electrochemical strategies (CV, potentiostatic EIS, and potentiodynamic EIS) for obtaining the HOMO and LUMO position for P3HT films formed under ambient conditions on transparent conductive substrates (indium tin oxide (ITO) glass) are compared. The results are discussed in the frame of limitations of each technique. The cyclic voltammetric response and the data derived from potentiostatic EIS using electric equivalent circuits include the response of all processes involved in the measurements, particularly masking the LUMO response due to the presence of energetic states. In contrast, potentiodynamic EIS measured in a wide frequency range results in a more reliable approach since it allows discerning between middle-frequency-dependent processes associated with energetic states in the gap of the P3HT/ITO films, and low-frequency-dependent processes associated with filling and emptying of LUMO and HOMO states, respectively. It is a powerful and simple method to analyze the electronic structure of semiconductor organic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao H, He W, Mao Y, Ishikawa K, Dickerson JH, Hess WP (2014) Recent progress in degradation and stabilization of organic solar cells. J Power Sources 264:168–183

    Article  CAS  Google Scholar 

  2. Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412

    Article  CAS  Google Scholar 

  3. Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22:4097–4111

    Article  CAS  Google Scholar 

  4. Yang C, He G, Wang R, Li Y (1999) Solid-state electrochemical investigation of poly[2-methoxy,5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene]. J Electroanal Chem 471:32–36

    Article  CAS  Google Scholar 

  5. Johansson T, Mammo W, Svensson M, Andersson MR, Inganäs O (2003) Electrochemical bandgaps of substituted polythiophenes. J Mater Chem 13:1316–1323

    Article  CAS  Google Scholar 

  6. Al-Ibrahim M, Roth H-K, Schroedner M, Konkin A, Zhokhavets U, Gobsch G, Scharff P, Sensfuss S (2005) The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org Electron 6:65–77

    Article  CAS  Google Scholar 

  7. Al-Ibrahim M, Roth H-K, Zhokhavets U, Gobsch G, Sensfuss S (2005) Flexible large area polymer solar cells based poly(3-hexylthiophene)/fullerene. Sol Energy Sol Cells 85:13–20

    Article  CAS  Google Scholar 

  8. Admassie S, Inganäs O, Mammo W, Perzon E, Andersson MR (2006) Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synth Met 156:614–623

    Article  CAS  Google Scholar 

  9. Ho C-C, Liu Y-C, Lin S-H, Su W-F (2012) Synthesis, morphology, and optical and electrochemical properties of poly(3-hexylthiophene)-b-poly(3-thiopene hexylacetate). Macromolecules 45:813–820

    Article  CAS  Google Scholar 

  10. Hu X-L, Zuo L-J, Nan Y-X, Helgesen M, Hagemann O, Bundgaard E, Shi M-M, Krebs FC, Chen H-Z (2012) Fine tuning the HOMO energy levels of polythieno[3,4-b]thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications. Synth Met 162:2005–2009

    Article  CAS  Google Scholar 

  11. Ottone C, Berrouard P, Louarn G, Beaupré S, Gendron D, Zagorska M, Rannou P, Najari A, Sadki S, Leclerc M, Pron A (2012) Dono-acceptor alternating copolymers containing thienopyrroledione electron accepting units: preparation, redox behavior, and application to photovoltaic cells. Polym Chem 3:2355–2365

    Article  CAS  Google Scholar 

  12. Tremel K, Ludwigs S (2014) Morphology of P3HT in thin films in relation to optical and electrical properties. Adv Polym Sci 265:39–82

    Article  CAS  Google Scholar 

  13. Yang C, Tang A, Teng F, Jiang K (2015) Determination of HOMO levels of organic dyes in solid-state electrochemistry. J Solid State Electrochem 19:883–890

    Article  CAS  Google Scholar 

  14. Zhao H, Liao J, Peng M, Wang Y, Zhou W, Li B, Shen S, Xie Z (2015) Synthesis of fluorene-based di-BODIPY dyes containing different aromatic linkers and their properties. Tetrahedron Lett 56:7145–7149

    Article  CAS  Google Scholar 

  15. Josefík F, Mikysek T, Svobodová M, Šimůnek P, Kvapilová H, Ludvík J (2014) New triazaborine chromophores: their synthesis via oxazaborines and electrochemical and DFT study of their fundamental properties. Organometallics 33:4931–4939

    Article  Google Scholar 

  16. Rillema DP, Stayanov SR, Cruz AJ, Nguyen H, Moore C, Huang W, Siam K, Jehan A, KomReddy V (2015) HOMO-LUMO energy gap control in platinum(II) biphenyl complexes containing 2,2′-bipyridine ligands. Dalton Trans 44:17075–17090

    Article  CAS  Google Scholar 

  17. Mikysek T, Kvapilova H, Josefík F, Ludvík J (2016) Electrochemical and theoretical study of a new series of bicyclic oxazaborines. Anal Lett 49:178–187

    Article  CAS  Google Scholar 

  18. D’Andrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME (2005) Relationship between the ionization and oxidation potentials of molecular organic semiconductor. Org Electron 6:11–20

    Article  Google Scholar 

  19. Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Organ Electron 10:515–520

    Article  CAS  Google Scholar 

  20. Gua Z-L, Kim JB, Wang H, Jaye C, Fischer DA, Loo Y-L, Kahn A (2010) Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[66]-C61 butyric acid methyl ester blend. Org Electron 11:1779–1785

    Article  Google Scholar 

  21. Ratcliff EL, Meyer J, Sterier KX, Armstrong NR, Olson D, Kahn A (2012) Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency. Org Electron 13:744–749

    Article  CAS  Google Scholar 

  22. Whitcher TJ, Talik NA, Woon K, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P (2014) Determination of energy levels at the interface between O2 plasma treated ITO/P3HT:PCBM and PEDOT:PSS/P3HT:PCBM using angular-resolved x-ray and ultraviolet photoelectron sprectroscopy. J Phys D Appl Phys 47:055109

    Article  Google Scholar 

  23. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell application. Adv Mater 23:2367–2371

    Article  CAS  Google Scholar 

  24. Toušek J, Toušková J, Ludvík J, Liška A, Remeš Z, Kylián O, Kousal J, Chomutová R, Heckler IM, Bundgaard E, Krebs FC (2016) Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage. Solid State Electron 116:111–118

    Article  Google Scholar 

  25. Nádaždy V, Schauer F, Gmucová K (2014) Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors. Appl Phys Lett 105:142109

    Article  Google Scholar 

  26. Gmucová K, Nádaždy V, Schauer F, Kaise M, Majková E (2015) Electrochemical spectroscopic methods for the fine band gap electronic structure mapping in organic semiconductors. J Phys Chem C 119:15926–15934

    Article  Google Scholar 

  27. Schauer F, Tkáčová M, Nádaždy V, Gmucová K, Ožvoldová M, Tjáč L, Chlpík J (2016) Electronic structure of UV degradation defects in polysilanes studied by energy resolved-electrochemical impedance spectroscopy. Polym Degrad Stab 126:204–208

    Article  CAS  Google Scholar 

  28. Cortina-Marrero HJ, Martínez-Alonso C, Hechavarría-Difur L, Hu H (2013) Photovoltaic performance improvement in planar P3HT/CdS solar cells induced by structural, optical and electrical property modification in thermal annealed P3HT thin films. Eur Phys J Appl Phys 63:10201 (7 pages)

    Article  Google Scholar 

  29. Nicho ME, Hernandez F, Hu H, Medrano G, Guizado M, Guerrero JA (2009) Physicochemical and morphological properties of spin-coated poly (3-alkylthiophene) thin films. Sol Energy Mater & Sol Cells 93:37–40

    Article  CAS  Google Scholar 

  30. Alvarado-Tenorio G, Cortina-Marrero HJ, Nicho ME, Márquez-Aguilar PA, Hu H (2016) Improvement of photovoltaic performance of inverted hybrid solar cells by adding single-wall carbon nanotubes in poly(3-hexylthiophene). Mater Sci Semicon Proces 56:37–42

    Article  CAS  Google Scholar 

  31. Armstrong NR, Lin AWC, Fujihira M, Kuwana T (1976) Electrochemical and surface characteristics of tin oxide and indium oxide electrodes. Anal Chem 48:741–750

    Article  CAS  Google Scholar 

  32. Brumbach M, Veneman PA, Marrikar FS, Schulmeyer T, Simmonds A, Xia W, Lee P, Armstrong NR (2007) Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes. Lang Des 23:11089–11099

    Article  CAS  Google Scholar 

  33. Gasiorowski J, Mardare AI, Sariciftci NS, Hassel AW (2013) Electrochemical characterization of sub-micro-gram amounts of organic semiconductors using scanning droplet cell microscopy. J Electroanal Chem 691:77–82

    Article  CAS  Google Scholar 

  34. Arenas MC, Mendoza N, Cortina H, Nicho ME, Hu H (2010) Influence of poly(3-octylthiophene) (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Sol Energy Mater Sol Cells 94:29–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT-SENER-Sustentabilidad No. 245754 and PAPIIT-UNAM No. IN106416 for financial supports. Alejandro Baray-Calderón thanks CONACyT for graduate student scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Ugalde-Saldivar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo-Peña, P., Baray-Calderón, A., Hu, H. et al. Measurements of HOMO-LUMO levels of poly(3-hexylthiophene) thin films by a simple electrochemical method. J Solid State Electrochem 21, 2407–2414 (2017). https://doi.org/10.1007/s10008-017-3587-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3587-2

Keywords

Navigation