Skip to main content
Log in

Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline TiO2 was prepared using water-assisted hydrothermal technique. X-ray diffraction pattern confirms the formation of tetragonal anatase phase, and it was further confirmed with Raman results. Williamson-Hall (W-H) plot reveals an induced strain in the sample and the calculated crystallite size of 15 nm is in accordance with the XRD results. Strain induced in the sample is due to creation of oxygen vacancies (defect), and it is responsible for the mixed valence state of Ti atom (Ti3+ and Ti4+) which is confirmed by X-ray photoelectron spectroscopy. Impedance studies result in increased conductivity of oxygen defect-based TiO2 due to its fast electron hopping between the mixed valence states. High-resolution scanning electron microscopic (HR-SEM) image shows a well-agglomerated spherical-shaped nanoparticle with high surface area of 152 m2/g. Here, we report for the first time the effect of mono and co-sensitization of natural dyes on the prepared TiO2 photoanode for dye-sensitized solar cell (DSSC) applications. The interfacial charge transfer resistance, chemical capacitance and electron recombination lifetime of the devices were examined using electrochemical impedance spectroscopy (EIS) analysis, and the performance of the best photoanode was studied using standard solar simulator at 1 Sun intensity (AM 1.5 G).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95(3):735–758

  2. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    Article  CAS  Google Scholar 

  3. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  4. Karunagaran B, Uthirakumar P, Chung SJ, Velumani S, Suh EK (2007) TiO2 thin film gas sensor for monitoring ammonia. Mater Charact 58(8–9):680–684

    Article  CAS  Google Scholar 

  5. Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192

    Article  CAS  Google Scholar 

  6. O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  7. Magne C, Dufour F, Labat F, Lancel G, Durupthy O, Cassaignon S, Pauporté T (2012) Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties. J Photochem Photobiol A Chem 232:22–31

    Article  CAS  Google Scholar 

  8. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  CAS  Google Scholar 

  9. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  10. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44(10):3244–3294

    Article  CAS  Google Scholar 

  11. Calogero G, Yum J-H, Sinopoli A, Di Marco G, Grätzel M, Nazeeruddin MK (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86(5):1563–1575

    Article  CAS  Google Scholar 

  12. Lai WH, Su YH, Teoh LG, Hon MH (2008) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol A Chem 195(2–3):307–313

    Article  CAS  Google Scholar 

  13. Ashok Kumar K, Manonmani J, Senthilselvan J (2014) Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J Mater Sci Mater Electron 25(12):5296–5301

    Article  CAS  Google Scholar 

  14. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920

    Article  CAS  Google Scholar 

  15. Li W, Ni C, Lin H, Huang CP, Shah SI (2004) Size dependence of thermal stability of TiO2 nanoparticles. J Appl Phys 96(11):6663–6668

    Article  CAS  Google Scholar 

  16. Batakrushna S, Giri PK, Kenji I, Minoru F (2014) Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J Phys D Appl Phys 47(21):215302

    Article  Google Scholar 

  17. Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 4:21–28

    Article  CAS  Google Scholar 

  18. Ashok Kumar K, Ramesh D, Gunaseelan M, Subalakshmi K, Senthilselvan J (2015) Structural, optical and impedance studies of hydrothermally and solvothermally prepared SnO2 nanocrystallites for conducting electrode application. Trans Indian Inst Metals 68(2):221–225

    Article  Google Scholar 

  19. Das TK, Ilaiyaraja P, Mocherla PSV, Bhalerao GM, Sudakar C (2016) Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells. Sol Energy Mater Sol Cells 144:194–209

    Article  CAS  Google Scholar 

  20. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116(13):7515–7519

    Article  CAS  Google Scholar 

  21. Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2014) Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6(4):1946–2008

    Article  CAS  Google Scholar 

  22. Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM (2011) Synthesis and characterization of pure anatase TiO2 nanoparticles. J Mater Sci Mater Electron 22(7):821–824

    Article  CAS  Google Scholar 

  23. Göpel W, Anderson JA, Frankel D, Jaehnig M, Phillips K, Schäfer JA, Rocker G (1984) Surface defects of TiO2 (110): a combined XPS, XAES and ELS study. Surf Sci 139(2):333–346

    Article  Google Scholar 

  24. Quan X, Zhao Q, Tan H, Sang X, Wang F, Dai Y (2009) Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process. Mater Chem Phys 114(1):90–98

    Article  CAS  Google Scholar 

  25. Wang BG, Shi EW, Zhong WZ (1997) Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions. Cryst Res Technol 32(5):659–667

    Article  CAS  Google Scholar 

  26. Joseph Antony Raj K, Vishwanathan B (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem 48A:1378–1382

  27. Lee J-J, Rahman MM, Sarker S, Nath NCD, Ahammad AJS, Lee JK (2011) Metal oxides and their composites for the photoelectrode of dye sensitized solar cells. Adv Compos Mater Med Nanotechnol. doi:10.5772/15280, 7, InTech

    Google Scholar 

  28. Ashok Kumar K, Manimuthu P, Ezhilarasi VS, Venkateswaran C (2014) Grain size dependent magneto-dielectric studies on Lu3Fe5O12. Phys B Condens Matter 448:333–335

  29. Kim SH, Choi K-H, Lee H-M, Hwang D-H, Do L-M, Chu HY, Zyung T (2000) Impedance spectroscopy of single- and double-layer polymer light-emitting diode. J Appl Phys 87(2):882–888

    Article  CAS  Google Scholar 

  30. Kulesza PJ, Galus Z (1992) Mixed-valence electron hopping, redox conduction and migration effects in solid-state electrochemistry of transition metal hexacyanoferrates. J Electroanal Chem 323(1–2):261–274

    Article  CAS  Google Scholar 

  31. Schwarzburg K, Willig F (2003) Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell. J Phys Chem B 107(15):3552–3555

  32. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110(50):25210–25221

    Article  CAS  Google Scholar 

  33. Lee R-H, Huang Y-W, Chang J-W, Hwang J-C, Chen Y-C, Jeng R-J (2011) Electrochemical impedance characterization and photovoltaic performance of N719 dye-sensitized solar cells using quaternized ammonium iodide containing polyfluorene electrolyte solutions. Polym Adv Technol 22(12):1650–1657

    Article  CAS  Google Scholar 

  34. Longo C, Nogueira AF, De Paoli M-A, Cachet H (2002) Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J Phys Chem B 106(23):5925–5930

    Article  CAS  Google Scholar 

  35. Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys 5(24):5360–5364

    Article  CAS  Google Scholar 

  36. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  CAS  Google Scholar 

  37. Pan M, Huang N, Zhao X, Fu J, Zhong X (2013) Enhanced efficiency of dye-sensitized solar cell by high surface area anatase-TiO2-modified P25 paste. J Nanomater 2013(760685):6

    Google Scholar 

  38. Anuratha KS, Lakshminarasimhan N (2014) Role of synthesis medium of TiO2 nanoparticles in enhancing the open circuit voltage and efficiency in dye-sensitized solar cell. J Solid State Electrochem 18(12):3407–3414

    Article  CAS  Google Scholar 

  39. Wang D, Wang W, Ma X, Zhang C, Zhao J, Zhang X (2015) Comparative study on the influence of TiO2 precursors on ZnO-based dye-sensitized solar cells. Ind Eng Chem Res 54(50):12639–12645

    Article  CAS  Google Scholar 

  40. Lim SP, Pandikumar A, Lim HN, Ramaraj R, Huang NM (2015) Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-doped-TiO2 photoanode. Sci Rep 5:11922

    Article  Google Scholar 

  41. Al-Ghamdi AA, Gupta RK, Kahol PK, Wageh S, Al-Turki YA, El Shirbeeny W, Yakuphanoglu F (2014) Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Commun 183:56–59

    Article  CAS  Google Scholar 

  42. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107(2):597–606

    Article  CAS  Google Scholar 

  43. Mashreghi A, Bahrami Moghadam F (2016) Effect of photoanode active area on photovoltaic parameters of dye sensitized solar cells through its effect on series resistance investigated by electrochemical impedance spectroscopy. J Solid State Electrochem 1–8

  44. Veerender P, Saxena V, Gusain A, Jha P, Koiry SP, Chauhan AK, Aswal DK, Gupta SK (2013) Effect of Co-sensitization and acid treatment on TiO2 photoanodes in dye-sensitized solar cells. AIP Conf Proc 1512(1):778–779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through research grant from University Grants Commission (UGC), India [41-915/2012 (SR) dt, 26 July 2012]. The authors thank UGC for the financial grant; National Center for Nanoscience and Nanotechnology (NCNSNT), University of Madras, Chennai, India for the XPS studies; Indian Institute of Technology, Madras for the HRSEM (Chemical Engineering Lab) and BET analyses (Department of Chemistry); and Center for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, India for the photovoltaic (J-V) measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Senthilselvan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.A., Subalakshmi, K. & Senthilselvan, J. Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications. J Solid State Electrochem 20, 1921–1932 (2016). https://doi.org/10.1007/s10008-016-3191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3191-x

Keywords

Navigation