Skip to main content

Advertisement

Log in

A facile method to prepare graphene-coat cotton and its application for lithium battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The free-standing and binder-free electrode materials, cotton/graphene (CGN) composites were prepared via a simple “dipping and freeze-drying” process using raw cotton as the supporting body (platform) and graphene oxide (GO) as the suspension. Then the cotton/GO (CGO) composites were annealed at 1000 °C under an Ar flow conditions to obtain CGN composites. The results show that the CGN structure can protect the cotton framework and have better thermal stable property than the cotton alone. Galvanostatic charge–discharge tests demonstrated that the GO concentration had great effects on their electrochemical performances. The CGN (for the GO with 3 and 5 mg ml−1) provide reversible discharge capacity of 160 mAh g−1 after 100 cycles, which is about 1.5 times higher than that of the cotton alone (115 mAh g−1 after 100 cycles). Excellent electrochemical properties of CGN can be ascribed to its controllable structure with more lithium ion storage sites, high electronic conductivity, and fast ion diffusion velocity. The results suggest that this work develops a simple, cheap, and suitable large-scale production method in the lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245

    Article  CAS  Google Scholar 

  2. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  3. Wang X, Weng Q, Liu X, Wang X, Tang DM, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett 14:1164–1171

    Article  CAS  Google Scholar 

  4. Li B, Zai J, Xiao Y, Han Q, Qian X (2014) SnO2/C composites fabricated by a biotemplating method from cotton and their electrochemical performances. CrystEngComm 16:3318

    Article  CAS  Google Scholar 

  5. Jiang Z, Pei B, Manthiram A (2013) Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. J Mater ChemA 1:7775

    Article  CAS  Google Scholar 

  6. Chang J, Huang X, Zhou G, Cui S, Hallac PB, Jiang J, Hurley PT, Chen J (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26:758–764

    Article  CAS  Google Scholar 

  7. Miao L, Wang W, Yuan K, Yang Y, Wang A (2014) A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material. Chem Commun 50:13231–13234

    Article  CAS  Google Scholar 

  8. Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307

    Article  CAS  Google Scholar 

  9. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24:1089–1094

    Article  CAS  Google Scholar 

  10. Xue J, Zhao Y, Cheng H, Hu C, Hu Y, Meng Y, Shao H, Zhang Z, Qu L (2013) An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Phys Chem Chem Phys 15:8042–8045

    Article  CAS  Google Scholar 

  11. Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458

    Article  CAS  Google Scholar 

  12. Cardador MJ, Paparizou E, Gallego M, Stalikas C (2014) Cotton-supported graphene functionalized with aminosilica nanoparticles as a versatile high-performance extraction sorbent for trace organic analysis. J Chromatogr A 1336:43–51

    Article  CAS  Google Scholar 

  13. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252

    Article  CAS  Google Scholar 

  14. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  15. Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494

    Article  CAS  Google Scholar 

  16. Ai W, Du Z, Fan Z, Jiang J, Wang Y, Zhang H, Xie L, Huang W, Yu T (2014) Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon 76:148–154

    Article  CAS  Google Scholar 

  17. Lv W, Sun F, Tang D-M, Fang H-T, Liu C, Yang Q-H, Cheng H-M (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21:9014

    Article  CAS  Google Scholar 

  18. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

  19. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4Anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  20. Guo CX, Wang M, Chen T, Lou XW, Li CM (2011) A hierarchically nanostructured composite of MnO2/Conjugated polymer/graphene for high-performance lithium ion batteries. Adv Energy Mater 1:736–741

    Article  CAS  Google Scholar 

  21. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  22. Kim H, Kim S-W, Park Y-U, Gwon H, Seo D-H, Kim Y, Kang K (2010) SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res 3:813–821

    Article  CAS  Google Scholar 

  23. Zhou X, Yin YX, Wan LJ, Guo YG (2012) Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun 48:2198–2200

    Article  CAS  Google Scholar 

  24. Juanjuan Z, Ruiyi L, Zaijun L, Junkang L, Zhiguo G, Guangli W (2014) Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale 6:5458–5466

    Article  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  26. Wimalasiri Y, Zou L (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  28. Nguyen ST, Nguyen HT, Rinaldi A, Nguyen NPV, Fan Z, Duong HM (2012) Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications. Colloids Surf A Physicochem Eng Asp 414:352–358

    Article  CAS  Google Scholar 

  29. Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High surface area tapes produced with functionalized graphene. ACS Nano 5:5214–5222

    Article  CAS  Google Scholar 

  30. Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J, Kim S-J (2011) Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl Nanosci 2:119–126

    Article  Google Scholar 

  31. Hertel T, Walkup R, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870–13873

    Article  CAS  Google Scholar 

  32. Adebajo MO, Frost RL (2004) Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochimica acta. Part A, Mol Biomol Spectrosc 60:2315–2321

    Article  Google Scholar 

  33. Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X, Lu X, Sun L, Zhang H (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25:5916–5921

    Article  CAS  Google Scholar 

  34. Zhang M, Gao B, Li Y, Zhang X, Hardin IR (2013) Graphene-coated pyrogenic carbon as an anode material for lithium battery. Chem Eng J 229:399–403

    Article  CAS  Google Scholar 

  35. Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241

    Article  Google Scholar 

  36. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  CAS  Google Scholar 

  37. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–1713

    Article  CAS  Google Scholar 

  38. Xu Z, Zhang Y, Li P, Gao C (2012) Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6:7103–7113

    Article  CAS  Google Scholar 

  39. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A Physicochem Eng Asp 296:76–85

    Article  CAS  Google Scholar 

  40. Abrasonis G, Gago R, Vinnichenko M, Kreissig U, Kolitsch A, Möller W (2006) Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study. Physical Review B 73

  41. Liu H, Zhang L, Guo Y, Cheng C, Yang L, Jiang L, Yu G, Hu W, Liu Y, Zhu D (2013) Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. J Mater Chem C 1:3104

    Article  CAS  Google Scholar 

  42. Ferrari A, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64

  43. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291

    Article  CAS  Google Scholar 

  44. Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  45. Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572

    Article  Google Scholar 

  46. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638

    Article  CAS  Google Scholar 

  47. Levi MD, Aurbach D (1997) The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J Electroanal Chem 421:79–88

    Article  CAS  Google Scholar 

  48. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources 68:91–98

    Article  CAS  Google Scholar 

  49. Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391

    Article  CAS  Google Scholar 

  50. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852

    Article  CAS  Google Scholar 

  51. Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975

    Article  CAS  Google Scholar 

  52. Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52:1472–1476

    Article  CAS  Google Scholar 

  53. Jin B, Gu H-B, Kim K-W (2007) Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries. J Solid State Electrochem 12:105–111

    Article  Google Scholar 

  54. Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S (2014) High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources 270:28–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sci-ence Foundation of China (51172050, 51102060, 51102063,51302050, and 51372052), Shandong Province Young and Middle-Aged Scientists Research Awards Fund (BS2013CL003), and the Fundamental Research Funds for the Central Universi-ties (HIT. ICRST.2010009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqian Zhang, Xiaoxiao Huang or Guangwu Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huang, X., Zhang, X. et al. A facile method to prepare graphene-coat cotton and its application for lithium battery. J Solid State Electrochem 20, 1251–1261 (2016). https://doi.org/10.1007/s10008-016-3118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3118-6

Keywords

Navigation