Skip to main content
Log in

Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) is one of the fundamental reactions in electrochemistry and has been widely studied, but the mechanistic details of ORR still remain elusive. In this work, the role of electrochemically oxygenated species, such as adsorbed hydroxide, OHads, adsorbed oxygen, Oads, and Pt(111) oxide, PtO, in the ORR dynamics is studied by employing electrochemical techniques, i.e., combining rotating disk mass-transport control with potential sweep rate perturbation. In this framework, a reduction peak at 0.85 V, E ORR, is detected. This peak shows a different electrochemical dynamics than that of Pt(111) oxides. The data analysis suggests that neither OHads nor Oads are the main bottleneck in the mechanism. Instead, results support the reduction of a soluble intermediate species as the rate determining step in the mechanism. On the other hand, PtO species, which are generated at relatively high potentials and are responsible of surface disordering, strongly inhibit the ORR as long as they are adsorbed in the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wroblowa HS, Chi PY, Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem 69:195–201

    Article  CAS  Google Scholar 

  2. Kinoshita K (1992) Electrochemical oxygen technology. John Wiley and Sons, New York

    Google Scholar 

  3. Damjanovic A, Genshaw MA, Bockris JOM (1966) The role of hydrogen peroxide in the reduction of oxygen at platinum electrodes. J Phys Chem 70:3761–3762

    Article  CAS  Google Scholar 

  4. Damjanovic A, Brusic V (1967) Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 12:615–628

    Article  CAS  Google Scholar 

  5. Appleby AJ (1970) Electrocatalysis and fuel cells. Catal Rev 4:221–243

    Article  CAS  Google Scholar 

  6. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction an in situ XANES and EXAFS investigation. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  7. Llang CC, Juliar AL (1965) The overpotential of oxygen reduction at platinum electrodes. J Electrochem Chem 9:390–394

    Google Scholar 

  8. Paucirova M, Drazic DM, Damjanovic A (1973) The effect of surface coverage by adsorbed oxygen on the kinetics of oxygen reduction at oxide free platinum. Electrochim Acta 18:945–951

    Article  CAS  Google Scholar 

  9. Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single–crystal surfaces in perchloric acid solutions. J Electroanal Chem 377:249–259

    Article  CAS  Google Scholar 

  10. Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  11. Nørskov J, Rossmeisl J, Logadottir A, Lindqvist L (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  12. Viswanathan V, Hansen H, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660

    Article  CAS  Google Scholar 

  13. Jinnouchi R, Kodama K, Hatanaka T, Morimoto Y (2011) First principles based mean field model for oxygen reduction reaction. Phys Chem Chem Phys 13:21070–21083

    Article  CAS  Google Scholar 

  14. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  15. Roques J, Anderson AB, Murthi VS, Mukerjee S (2005) Potential shift for OH(ads) formation on the Pt skin on Pt 3Co(111) electrodes in acid theory and experiment. J Electrochem Soc 152:E193–E199

    Article  CAS  Google Scholar 

  16. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction –XRD, XAS, and electrochemical studies. J Phys Chem 99:4577–4589

    Article  CAS  Google Scholar 

  17. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt–M/C bimetallic electrocatalysts using XAS. J Electrochem Soc 152:A2159–A2169

    Article  Google Scholar 

  18. Markovic NM, Gasteiger HA, Ross PN Jr (1996) Oxygen reduction on platinum low–index single–crystal surfaces in alkaline solution: rotating ring disk Pt(hkl) studies. J Phys Chem 100:6715–6721

    Article  Google Scholar 

  19. Schmidtz TJ, Stamenkovic V, Ross PN Jr, Markovic NM (2003) Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolyte. Part 3. The oxygen reduction reaction. Phys Chem Chem Phys 5:400–406

    Article  Google Scholar 

  20. Markovic NM, Gasteiger HA, Grgur BN, Ross PN (1999) Oxygen reduction reaction on Pt(111): effects of bromide. J Electroanal Chem 467:157–163

    Article  CAS  Google Scholar 

  21. Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108:4127–4133

    Article  CAS  Google Scholar 

  22. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt−Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC−XPS. J Phys Chem C 112:2750–2755

    Article  CAS  Google Scholar 

  23. Attard GA, Ye JY, Brew A, Morgan D, Bergstrom-Mann P, Sun G (2014) Characterisation and electrocatalytic activity of PtNi alloys on Pt{1 1 1} electrodes formed using different thermal treatments. J Electroanal Chem 716:106–111

    Article  CAS  Google Scholar 

  24. Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core–shell nanoparticle supports. Electrochem Commun 9:2848–2853

    Article  CAS  Google Scholar 

  25. Strmcnik D, Escudero–Escribano M, Kodama K, Stamenkovic VR, Cuesta A, Marković NM (2010) Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat Chem 2:880–885

    Article  CAS  Google Scholar 

  26. Balbuena PB, Calvo RS, Lamas EJ, Salazar PF, Seminario JM (2006) Adsorption and dssociation of H2O2 on Pt and Pt−alloy clusters and surfaces. J Phys Chem B 110:17452–17459

    Article  CAS  Google Scholar 

  27. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ (2012) Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys Chem Chem Phys 14:7384–7391

    Article  CAS  Google Scholar 

  28. Gómez-Marín AM, Schouten KJP, Koper MTM, Feliu JM (2012) Interaction of hydrogen peroxide with a Pt(111) electrode. Electrochem Commun 22:153–156

    Article  Google Scholar 

  29. Katsouraros I, Schneider B, Meier JC, Benedikt U, Biedermann PU, Auer AA, Cuesta A, Mayrhofer KJJ (2013) The impact of spectator species on the interaction of H2O2 with platinum--implications for the oxygen reduction reaction pathways. Phys Chem Chem Phys 15:8058–8068

    Article  Google Scholar 

  30. Tian F, Anderson AB (2011) Effective reversible potential, energy loss, and overpotential on platinum fuel cell cathodes. J Phys Chem C 115:4076–4088

    Article  CAS  Google Scholar 

  31. Walch SP (2011) Effect of solvation on the oxygen reduction reaction on Pt catalyst. J Phys Chem C 115:7377–7391

    Article  CAS  Google Scholar 

  32. Gómez–Marín AM, Clavilier J, Feliu JM (2013) Sequential Pt(1 1 1) oxide formation in perchloric acid: an electrochemical study of surface species inter-conversion. J Electroanal Chem 688:360–370

    Article  Google Scholar 

  33. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2007) Site–specific vs specific adsorption of anions on Pt and Pt–based alloys. J Phys Chem C 111:9267–9274

    Article  CAS  Google Scholar 

  34. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2009) Langmuir 25:1897–1900

    Article  CAS  Google Scholar 

  35. Gómez–Marín AM, Feliu JM (2013) New insights into the oxygen reduction reaction mechanism on Pt(111): a detailed electrochemical study. ChemSusChem 6:1091–1100

    Article  Google Scholar 

  36. Clavilier J, Armand D, Sun S, Petit M (1986) Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J Electroanal Chem 205:267–277

    Article  CAS  Google Scholar 

  37. Korzeniewsky C, Climent V, Feliu JM (2012) In: Bard AJ, Zoski CG (eds) Electroanalytical chemistry a series of advances, vol Chap 2, 24th edn. CRC Press, Boca Raton, pp 75–170

    Google Scholar 

  38. Cahan BD, Villullas HM (1991) The hanging meniscus rotating disk (HMRD). J Electroanal Chem 307:263–268

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  40. Van der Vliet D, Strmcnik DS, Wang C, Stamenkovic VR, Markovic NM, Koper MTM (2010) J Electroanal Chem 647:29–34

    Article  Google Scholar 

  41. Markovic NM, Gasteiger H, Ross PN Jr (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591–1597

    Article  CAS  Google Scholar 

  42. Andricacos PC, Cheh HY (1981) The application of linear sweep voltammetry to a rotating disk electrode for a first-order irreversible reaction. J Electroanal Chem 124:95–101

    Article  CAS  Google Scholar 

  43. Quintana GC, Andricacos PC, Cheh HY (1983) Linear sweep voltammetry at a rotating disk electrode for first-order quasi-reversible reactions. J Electroanal Chem 144:77–85

    Article  CAS  Google Scholar 

  44. Andricacos PC, Cheh HY (1980) The application of linear sweep voltammetry to a rotating disk electrode for the reversible deposition of an insoluble species. J Electrochem Soc 127:2173–2160

    Google Scholar 

  45. Sandoval AP, Gómez–Marín AM, Suárez–Herrera MF, Climent V, Feliu JM (2015) Role of the interfacial water structure on electrocatalysis: oxygen reduction on Pt(111) in methanesulfonic acid. Submitted

  46. Strmcnik D, Kodama K, Van der Vliet D, Greeley J, Stamenkovic VR, Markovic NM (2009) The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem 1:466–472

    Article  CAS  Google Scholar 

  47. Gohda Y, Schnur S, Groß A (2008) A influence of water on elementary reaction steps in electrocatalysis. Faraday Discuss 140:233–244

    Article  CAS  Google Scholar 

  48. Shao M, Liu P, Adzic RR (2006) Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J Am Chem Soc 128:7408–7409

    Article  CAS  Google Scholar 

  49. Kolthoff IM, Jordan J (1952) Oxygen induced electroreduction of hydrogen peroxide and reduction of oxygen at the rotated gold wire electrode. J Am Chem Soc 74:4801–4805

    Article  CAS  Google Scholar 

  50. Bowenand RJ, Urbach HB (1968) Dynamic behavior of the oxygen–peroxide couple on platinum. J Chem Phys 49:1206–1215

    Article  Google Scholar 

  51. Urbachand HB, Bowen RJ (1969) Behaviour of the oxygen-peroxide couple on platinum. Electrochim Acta 14:927–940

    Article  Google Scholar 

  52. Noël JM, Latus A, Lagrost C, Volanschi E, Hapiot P (2012) Evidence for OH radical production during electrocatalysis of oxygen reduction on Pt surfaces: consequences and application. J Am Chem Soc 134:2835–2841

    Article  Google Scholar 

  53. Rao PS, Hayon E (1975) Redox potentials of free radicals. IV. Superoxide and hydroperoxy radicals . O2- and . HO2. J Phys Chem 79:397–402

    Article  CAS  Google Scholar 

  54. Codorniu–Hernández E, Kusalik PG (2012) Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer. J Am Chem Soc 134:532–538

    Article  Google Scholar 

  55. Mitroka S, Zimmeck S, Troya D, Tanko JM (2010) How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions. J Am Chem Soc 132:2907–2913

    Article  CAS  Google Scholar 

  56. Suma K, Sumiyoshi Y, Endo Y (2006) The rotational spectrum of the water-hydroperoxy radical (H2O-HO2) complex. Science 311:1278–1282

    Article  CAS  Google Scholar 

  57. Aloisio S, Francisco JS (2000) Radical−water complexes in earth’s atmosphere. Acc Chem Res 33:825–830

    Article  CAS  Google Scholar 

  58. Anderson AB, Albu TV (1999) Ab initio approach to calculating activation energies as functions of electrode potential: trial application to four-electron reduction of oxygen. Electrochem Commun 1:203–206

    Article  CAS  Google Scholar 

  59. Anderson AB, Albu TV (1999) Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J Am Chem Soc 121:11855–11863

    Article  CAS  Google Scholar 

  60. Damjanovic A, Sepa DB (1990) An analysis of the pH dependence of enthalpies and Gibbs energies of activation for O2 reduction at Pt electrodes in acid solutions. Electrochim Acta 35:1157–1162

    Article  CAS  Google Scholar 

  61. Sepa D, Vojnovic M, Vracar L, Damjanovic A (1986) Apparent enthalpies of activation of electrodic oxygen reduction at platinum in different current density regions—I. Acid solution. Electrochim Acta 31:91–96

    Article  CAS  Google Scholar 

  62. Grgur BN, Markovic NM, Ross PN (1997) Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Can J Chem 75:1465–1471

    Article  CAS  Google Scholar 

  63. Macia MD, Campiña JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564:141–150

    Article  CAS  Google Scholar 

  64. Kuzume A, Herrero E, Feliu JM (2007) Oxygen reduction on stepped platinum surfaces in acidic media. J Electroanal Chem 599:333–343

    Article  CAS  Google Scholar 

  65. Pérez J, Villullas HM, Gonzalez ER (1997) Structure sensitivity of oxygen reduction on platinum single crystal electrodes in acid solutions. J Electroanal Chem 435:179–187

    Article  Google Scholar 

  66. El Kadiri E, Faure R, Durand R (1991) Electrochemical reduction of molecular oxygen on platinum single crystals. J Electroanal Chem 301:177–188

    Article  Google Scholar 

  67. Climent MA, Aldaz A, Vásquez JL (1983) Método semiempírico de cálculo de colas de curvas voltamétricas reversibles. Anal Quim 79:660–663

    CAS  Google Scholar 

  68. Bontempelli G, Magno F, Daniele S (1985) Simple relationship for calculating backward to forward peak-current ratios in cyclic voltammetry. Anal Chem 57:1503–1504

    Article  CAS  Google Scholar 

  69. Norskov JK, Nilsson A, Ogasawara H (2013) Direct observation of the oxygenated species duringoxygen reduction on a platinum fuel cell cathode. Nat Commun 4:2817–2822

    Google Scholar 

  70. Clavilier J, Rodes A, El Achi K, Zamakhchari MA (1991) Electrochemistry at platinum single crystals in acidic media: hydrogen and oxygen adsorption. J Chim Phys 88:1291–1337

    CAS  Google Scholar 

  71. Gómez–Marín AM, Feliu JM (2013) Oxide growth dynamics at Pt(1 1 1) in absence of specific adsorption: a mechanistic study. Electrochim Acta 104:367–377

    Article  Google Scholar 

  72. Berná A, Climent V, Feliu JM (2007) New understanding of the nature of OH adsorption on Pt(1 1 1) electrodes. Electrochem Commun 9:2789–2794

    Article  Google Scholar 

  73. Bondarenko AS, Stephens IEL, Hansen HA, Pérez-Alonso FJ, Tripkovic V, Johansson TP, Rossmeisl J, Nørskov JK, Chorkendorff I (2011) The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. Langmuir 27:2058–2066

    Article  CAS  Google Scholar 

  74. Hansen HA, Viswanathan V, Nørskov JK (2014) Unifying kinetic and thermodynamic analysis of 2 e– and 4 e– reduction of oxygen on metal surfaces. J Phys Chem C 118:6706–6718

    Article  CAS  Google Scholar 

  75. Anderson AB, Albu TV (2000) Catalytic effect of platinum on oxygen reduction an ab initio model including electrode potential dependence. J Electrochem Soc 147:4229–4238

    Article  CAS  Google Scholar 

  76. Rossmeisl J, Karlberg GS, Jaramillo T, Nørskov JK (2008) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346

    Article  CAS  Google Scholar 

  77. Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319:178–184

    Article  CAS  Google Scholar 

  78. Karlberg GS, Rossmeisl J, Nørskov JK (2007) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9:5158–5161

    Article  CAS  Google Scholar 

  79. Tripkovic V, Skulason E, Siahrostami S, Nørskov KJ, Rossmeisl J (2010) The oxygen reduction reaction mechanism on Pt(1 1 1) from density functional theory calculations. Electrochim Acta 55:7975–7981

    Article  CAS  Google Scholar 

  80. Hansen HA, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10:3722–3730

    Article  CAS  Google Scholar 

  81. Mooney CE, Anderson LC, Lunsford JH (1993) Energetics for the desorption of hydroxyl radicals from a platinum surface. J Phys Chem 97:2505–2506

    Article  CAS  Google Scholar 

  82. Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Rep 6:229–234

    Article  CAS  Google Scholar 

  83. Anderson AB (2012) Insights into electrocatalysis. Phys Chem Chem Phys 14:1330–1338

    Article  CAS  Google Scholar 

  84. Scherson DA, Tolmachev YV (2010) Impurity effects on oxygen reduction electrocatalysis at platinum ultramicroelectrodes: a critical assessment. Electrochem Solid-State Lett 13:F1–F2

    Article  CAS  Google Scholar 

  85. Damjanovic A, Genshaw MA, Bockris JOM (1967) The role of hydrogen peroxide in oxygen reduction at platinum in H2SO4 solution. J Electrochem Soc 114:466–472

    Article  CAS  Google Scholar 

  86. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602:L89–L94

    Article  CAS  Google Scholar 

  87. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  88. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  89. Gomez-Marin AM, Feliu JM (2012) Pt(1 1 1) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. Electrochim Acta 82:558–569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been carried out in the framework of the European Commission FP7 Initial Training Network “ELCAT,” Grant Agreement No. 214936–2. Supports from the Spanish MINECO though project CTQ2013–44083-P and GV through PROMETEOII/2014/013 (FEDER) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana M. Gómez–Marín or Juan M. Feliu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez–Marín, A.M., Feliu, J.M. Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media. J Solid State Electrochem 19, 2831–2841 (2015). https://doi.org/10.1007/s10008-015-2850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2850-7

Keywords

Navigation