Skip to main content
Log in

The effect of mass transfer on electrochemical impedance of a solid oxide fuel cell anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents electrochemical impedance simulation of a solid oxide fuel cell (SOFC) anode in order to investigate the effect of mass transport processes on the impedance spectra. The current model takes in to account the gas-phase transport processes both in the gas channel and within the porous electrode and couples the gas transport processes with the electrochemical kinetics. The impedance simulation is carried out in time domain, and the correlation between the anode harmonic responses to the sinusoidal excitation and the impedance spectra is analyzed. In order to solve the system of non-linear equations, an in-house code based on the finite difference method is developed and utilized. Results show a depressed semicircle in the Nyquist plot, which originates from gas transport processes in the gas channel, in addition to a Warburg diffusion impedance originates from gas transport in the thick porous anode. The influence of parameters such as electrode thickness, inlet gas composition, and temperature is also investigated and the results are discussed. The simulation results are in good agreement with published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Empirical exponent of the exchange current density

b :

Empirical exponent of the exchange current density

C :

Total molar concentration (mole m−3)

D i,j :

Binary diffusion coefficient between species i and j (m2 s−1)

D i,j eff :

Effective diffusion coefficients (m2 s−1)

D Bi :

Bosanquet diffusion coefficient (m2 s−1)

D Ki :

Knudsen diffusion coefficient (m2 s−1)

E act :

Activation energy of the exchange current density (kJ mol−1)

F :

Faraday’s constant (96,484.56 C mol−1)

f :

Frequency (Hz)

f g1 :

Relaxation frequency of the gas channel-related impedance (Hz)

f g2 :

Relaxation frequency of the porous electrode-related impedance (Hz)

H ch :

Channel height (m)

i :

Current density (A m−2)

i :

Exchange current density (A m−2)

J i :

Diffusive mole flux (mole m−2 s−1)

L :

Cell length (m)

L a :

Anode thickness (m)

M i :

Species molar mass (kg kmol−1)

p in i :

Inlet partial pressure of species (Pa)

p*i :

Partial pressure of reactants and products at the interface of gas channel and electrode (Pa)

p i :

Partial pressure of reactants and products at the reaction sites (Pa)

P ref :

Absolute atmospheric pressure (Pa)

R :

Universal gas constant (8.314 kJ kmol−1K−1)

R g :

Gas transport resistance (ohm m2)

r p :

Average pore radious

S i :

Volume-specific mole exchange rate of species i between channel and porous electrode (mole m−3 s−1)

\( \overset{\cdot }{s_{\mathrm{i}}} \) :

Volumetric species production/consumption rates due to electrochemical reactions (mole m−3 s−1)

T :

Temperature (K)

V cell :

Actual cell voltage (V)

V nernst :

Nernst voltage (reversible open circuit voltage) (V)

V i :

Special Fuller diffusion volume

W :

Unit cell width (m)

W ch :

Channel width (m)

X i :

Species mole fraction

Y :

Complex admittance (ohm−1)

Z :

Complex impedance (ohm)

η conc :

Concentration overvoltage (V)

η act :

Activation overvoltage (V)

η ohm :

Ohmic overvoltage (V)

η anode :

Anode overvoltage (V)

η steady :

Steady-state overvoltage (V)

η excitation :

Excitation amplitude (V)

τ :

Anode tortuosity

θ :

Time period (s)

γ :

Pre-exponential factor of the exchange current density (A m−2)

ε :

Anode porosity

References

  1. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  2. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier Science, Oxford

    Google Scholar 

  3. Macdonald JR (2005) Impedance spectroscopy—theory experiment and application, 2nd edn. Wiley, New York

    Google Scholar 

  4. Yuan X, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells, fundamentals and applications. Springer, London

    Book  Google Scholar 

  5. Huang Q, Hui R, Wang B, Zhang J (2007) A review of AC impedance modeling and validation in SOFC diagnosis. Electrochim Acta 52:8144–8164

    Article  CAS  Google Scholar 

  6. Wagner N, Schnurnberger W, Muller B, Lang M (1998) Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells. Electrochim Acta 43(24):3785–3793

    Article  CAS  Google Scholar 

  7. Primdahl S, Mogensen M (1998) Gas conversion impedance: a test geometry effect in characterization of solid oxide fuel cell anodes. J Electrochem Soc 145(7):2431–2438

    Article  CAS  Google Scholar 

  8. Primdahl S, Mogensen M (1999) Gas diffusion impedance in characterization of solid oxide fuel cell anodes. J Electrochem Soc 146(8):2827–2833

    Article  CAS  Google Scholar 

  9. Lang M, Auer C, Eismann A, Szabo P, Wagner N (2008) Investigation of solid oxide fuel cell short stacks for mobile applications by electrochemical impedance spectroscopy. Electrochim Acta 53:7509–7513

    Article  CAS  Google Scholar 

  10. Sonn V, Leonide A, Ivers-Tiffée E (2008) Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni∕8YSZ cermet electrodes. J Electrochem Soc 155(7):B675–B679

    Article  CAS  Google Scholar 

  11. Huang Q, Wang B, Qu W, Hui R (2009) Impedance diagnosis of metal-supported SOFCs with SDC as electrolyte. J Power Sources 191:297–303

    Article  CAS  Google Scholar 

  12. Ramos T, Hjelm J, Mogensen M (2011) Towards quantification of relations between electrode polarisation and microstructure. J Electrochem Soc 158(7):B814–B824

    Article  CAS  Google Scholar 

  13. Bessler W (2006) Gas concentration impedance of solid oxide fuel cell anodes I. Stagnation point flow geometry. J Electrochem Soc 153(8):A1492–A1504

    Article  CAS  Google Scholar 

  14. Bessler W, Gewies S (2007) Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry. J Electrochem Soc 154:B548–B559

    Article  CAS  Google Scholar 

  15. Mohammadi R, Ghassemi M, MollayiBarzi Y, Hamedi M (2012) Impedance simulation of a solid oxide fuel cell anode in time domain. J Solid State Electrochem 16:3275–3288

    Article  CAS  Google Scholar 

  16. Shi YX, Cai NS et al (2008) Simulation of electrochemical impedance spectra of solid oxide fuel cells using transient physical models. J Electrochem Soc 155:B270–B280

    Article  CAS  Google Scholar 

  17. Chaisantikulwat A, Goano CD, Meadows ES (2008) Dynamic modelling and control of planar anode-supported solid oxide fuel cell. J Comput Chem Eng 32:2365–2381

    Article  CAS  Google Scholar 

  18. Leonide A, Apel Y, Ivers-Tiffée E (2009) SOFC modeling and parameter identification by means of impedance spectroscopy. ECS Trans 19:81–109

    Article  CAS  Google Scholar 

  19. Mogensen M, Holtappels P (2013) Ni based solid oxide cell electrodes. In: Irvine JTS, Connor P (eds) Solid oxide fuels cells: facts and figures. Springer, London

    Google Scholar 

  20. Sunde S (1996) Monte Carlo simulations of polarization resistance of composite electrodes for solid oxide fuel cells. J Electrochem Soc 143(6):1930–1939

    Article  CAS  Google Scholar 

  21. Mogensen M, Lybye D, Kammer K, Bonanos N (2005) Ceria revisited: electrolyte or electrode material. Proceedings of the 9th International symposium on solid oxide fuel cells SOFC IX:1068–1074

  22. Wendt H, Kreysa G (1999) Electrochemical engineering. Springer, Berlin

    Book  Google Scholar 

  23. Todd B, Young JB (2002) Thermodynamic and transport properties of gases for use in solid oxide fuel cell modeling. J Power Sources 110:186–200

    Article  CAS  Google Scholar 

  24. Mills AF (1995) Heat and mass transfer. Irwin, Chicago

    Google Scholar 

  25. Bessler W (2005) A new computational approach for SOFC impedance based on detailed electrochemical reaction–diffusion models. Solid State Ionics 176:997–1011

    Article  CAS  Google Scholar 

  26. Schiesser WE, Griffiths GW (2009) A compendium of partial differential equation models: method of lines analysis with Matlab, 1st edn. Cambridge University, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Iran Renewable Energy Organization (SUNA) throughout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, R., Ghassemi, M., Barzi, Y.M. et al. The effect of mass transfer on electrochemical impedance of a solid oxide fuel cell anode. J Solid State Electrochem 18, 2815–2827 (2014). https://doi.org/10.1007/s10008-014-2536-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2536-6

Keywords

Navigation