Skip to main content
Log in

Electrochemically deposited ZnO films: an XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition from ZnCl2 aqueous solution was performed to grow ZnO thin films on the surface of polycrystalline copper plates. Electrochemical parameters for deposition were optimized by means of cyclic voltammetry (CV). The morphology of the deposits was studied via scanning electron microscopy (SEM), and their chemical composition was ascertained by means of X-ray photoelectron spectroscopy (XPS). The effects of changing the deposition bath temperature (T bath) and the role played by post-deposition treatments, such as temperature and time of annealing in air, were studied. SEM images of freshly deposited vs. annealed samples have shown that in the former case the films display a rough morphology with mixed grain/hexagonal platelets structures and in the latter smaller but more uniformly dispersed cubic grains. T bath is found to be the key parameter to induce the different morphology in the deposited films, which reflects in a different chemical reactivity of surface species, as found on the basis of the binding energies and relative quantitative ratios between Zn 2p and O 1s peaks. In fact, a higher T bath favours a more efficient desorption of OH groups upon annealing, the O 1s peak resulting to much more drastically modified oxide/hydroxide intensity ratio with respect to the case of the sample deposited at lower T bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The contribution of loosely bound oxygen species, such as H2O, is neglected in the following discussion.

References

  1. Badre C, Pauporté T (2009) Adv Mater 21:697–701

    Article  CAS  Google Scholar 

  2. Pauporté T, Bataille G, Joulaud L, Vermersch JF (2010) J Phys Chem C 114:194–202

    Article  Google Scholar 

  3. Wang XD, Summers CJ, Wang ZL (2004) Nano Lett 4:423–426

    Article  CAS  Google Scholar 

  4. Tseng YK, Huang CJ, Cheng HM, Lin IN, Liu KS, Chen IC (2003) Adv Funct Mater 13:811–814

    Article  CAS  Google Scholar 

  5. Könenkamp R, Word RW, Godinez M (2005) Nano Lett 5:2005–2008

    Article  Google Scholar 

  6. Jeong MC, Oh BY, Ham MH, Myoung F (2006) Appl Phys Lett 88:202105

    Article  Google Scholar 

  7. Lupan O, Pauporté T, Viana B (2010) ACS Appl Mater Interfaces 2:2083–2090

    Article  CAS  Google Scholar 

  8. Lupan O, Pauporté T, Viana B (2010) J Phys Chem C 114:14781–14785

    Article  CAS  Google Scholar 

  9. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897–1899

    Article  CAS  Google Scholar 

  10. Yoshida T, Zhang J, Komatsu D, Sawatani S, Minoura H, Pauporté T, Lincot D, Oekermann T, Schlettwein D, Tada H, Wöhrle D, Funabiki K, Matsui M, Miura H, Yanagi H (2009) Adv Funct Mater 19:17–43

    Article  CAS  Google Scholar 

  11. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  12. Chen W, Qiu Y, Yang S (2012) Phys Chem Chem Phys 14:10872–10881

    Article  CAS  Google Scholar 

  13. Keis K, Magnusson E, Lindström H, Lindquist SE, Hagfeldt A (2002) Sol Energy Mater Sol Cells 73:51–58

    Article  Google Scholar 

  14. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  15. Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  16. Lupan O, Guérin VM, Tiginyanu IM, Ursaki VV, Chow L, Heinrich H, Pauporté T (2010) J Photochem Photobiol A 211:65–73

    Article  CAS  Google Scholar 

  17. Guérin VM, Magne C, Pauporté T, Le Bahers T, Rathousky J (2010) ACS Appl Mater Interfaces 2:3677–3685

    Article  Google Scholar 

  18. Anta JA, Guillén E, Tena-Zaera R (2012) J Phys Chem C 116:11413–11425

    Article  CAS  Google Scholar 

  19. Bauer C, Boschloo G, Mukhtar E, Hagfeldt A (2001) J Phys Chem B 105:5585–5588

    Article  CAS  Google Scholar 

  20. Saito M, Fujihara S (2008) Energy Environ Sci 1:280–283

    Article  CAS  Google Scholar 

  21. Ambade SB, Mane RS, Han S-H, Lee S-H, Sung M-M, Joo O-S (2011) J Photochem Photobiol A 222:366–369

    Article  CAS  Google Scholar 

  22. Zhang QF, Chou TR, Russo B, Jenekhe SA, Cao GZ (2008) Angew Chem. Int Ed 47:2402–2406

    Article  CAS  Google Scholar 

  23. Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G (2011) Angew Chem,Int Ed 50:12321–12325

    Article  CAS  Google Scholar 

  24. Lin C-Y, Lai Y-H, Chen H-W, Chen J-G, Kung C-W, Vittal R, Ho K-C (2011) Energy Environ Sci 4:3448–3455

    Article  CAS  Google Scholar 

  25. Xu C, Wu J, Desai UV, Gao D (2011) J Am Chem Soc 133:8122–8125

    Article  CAS  Google Scholar 

  26. Chen W, Qiu Y, Zhong Y, Wong KS, Yang S (2010) J Phys Chem A 114:3127–3138

    Article  CAS  Google Scholar 

  27. Pauporté T, Yoshida T, Cortès R, Froment M, Lincot D (2003) J Phys Chem B 107:10077–10082

    Article  Google Scholar 

  28. Yoshida T, Pauporté T, Lincot D, Oekermann T, Minoura H (2003) J Electrochem Soc 150:C608

    Article  CAS  Google Scholar 

  29. Pauporté T, Rathousky J (2007) J Phys Chem C 111:7639–7644

    Article  Google Scholar 

  30. Goux A, Pauporté T, Yoshida T, Lincot D (2006) Langmuir 22:10545–10553

    Article  CAS  Google Scholar 

  31. Graaf H, Maedler C, Kehr M, Oekermann T (2009) J Phys Chem C 113:6910–6912

    Article  CAS  Google Scholar 

  32. Lupan O, Pauporté T (2010) J Cryst Growth 312:2454–2458

    Article  CAS  Google Scholar 

  33. Peulon S, Lincot D (1996) Adv Mater 8:166–170

    Article  CAS  Google Scholar 

  34. Goux A, Pauporté T, Chivot J, Lincot D (2005) Electrochim Acta 50:2239–2248

    Article  CAS  Google Scholar 

  35. Deroubaix G, Marcus P (1992) Surf Interface Anal 18:39–46

    Article  CAS  Google Scholar 

  36. Pauporté T, Lincot D (2000) Electrochim Acta 45:3345–3353

    Article  Google Scholar 

  37. Pauporté T, Jouanno E, Pellé F, Viana B, Aschehoug P (2009) J Phys Chem C 113:10422–10431

    Article  Google Scholar 

  38. Singh NK, Tripathi N, Rath S, Annapoorni S (2009) J Nanosci Nanotechnol 9:5608–5613

    Article  CAS  Google Scholar 

  39. Marí B, Manjon FJ, Mollar M, Cembrero J, Gomez R (2006) Appl Surf Sci 252:2826–2831

    Article  Google Scholar 

  40. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono LK, Roldan Cuenya B, Heinrich H (2010) Appl Surf Sci 256:1895–1907

    Article  CAS  Google Scholar 

  41. Sanchez S, Lévy-Clément C, Ivanova V (2012) J Electrochem Soc 159:D705–D712

    Article  CAS  Google Scholar 

  42. Lupan O, Chow L, Shishiyanu S, Monaico E, Shishiyanu T, Sontea V, Roldan Cuenya B, Naitabdi A, Park S, Schulte A (2009) Mater Res Bull 44:63–69

    Article  CAS  Google Scholar 

  43. Tripathi N, Vijayarangamuthu K, Rath S (2011) Mater Chem Phys 126:568–572

    Article  CAS  Google Scholar 

  44. Dalchiele EA, Giorgi P, Marotti RE, Martin F, Ramos-Barrado JR, Ayouci R, Leinen D (2001) Sol Energy Mater Sol Cells 70:245–254

    Article  CAS  Google Scholar 

  45. Zhang L, Chen Z, Tang Y, Jia Z (2005) Thin Solid Films 492:24–29

    Article  CAS  Google Scholar 

  46. Meng L-J (1994) Moreira de Sà CP, dos Santos MP. Appl Surf Sci 78:57–61

    Article  CAS  Google Scholar 

  47. Valtiner M, Borodin S (2007) Grundmeier G Phys. Chem Chem Phys 9:2406–2412

    Article  CAS  Google Scholar 

  48. Kunat M, Gil Girol S, Burghaus U, Woll C (2003) J Phys Chem B 107:14350–14356

    Article  CAS  Google Scholar 

  49. Yang LL, Zhao QX, Willander M, Liu XJ, Fahlman M, Yang JH (2010) Appl Surf Sci 256:3592–3597

    Article  CAS  Google Scholar 

  50. Meier U, Pettenkofer C (2005) Appl Surf Sci 252:1139–1146

    Article  CAS  Google Scholar 

  51. Sepulveda-Guzman S, Reeja-Jayan B, de la Rosa E, Torres-Castro A, Gonzalez-Gonzalez V, Jose-Yacaman M (2009) Mater Chem Phys 115:172–178

    Article  CAS  Google Scholar 

  52. Ramgir NS, Late DJ, Bhise AB, More MA, Mulla IS, Joag DS, Vijayamohanan K (2006) J Phys Chem B 110:18236–18242

    Article  CAS  Google Scholar 

  53. Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607

    Article  Google Scholar 

  54. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  55. Peulon S, Lincot D (1998) J Electrochem Soc 145:864

    Article  CAS  Google Scholar 

  56. Yeager E (1984) Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  57. Trasatti S (1991) Electrochim Acta 36:225–241

    Article  CAS  Google Scholar 

  58. Ardizzone S, Trasatti S (1996) Adv Colloid Interface Sci 64:173–251

    Article  CAS  Google Scholar 

  59. Goodenough JB, Manoharan R, Paranthaman M (1990) J Am Chem Soc 112:2016–2082

    Article  Google Scholar 

  60. Liu ZX, Li ZP, Qin HY, Liu BH (2011) J Power Sources 196:4972–4979

    Article  CAS  Google Scholar 

  61. Schoen G (1973) J Electron Spectrosc Relat Phenom 2:75–86

    Article  Google Scholar 

  62. Langer DW, Vesely CJ (1970) Phys Rev B 2:4885–4892

    Article  Google Scholar 

  63. Wagner CD (1975) Faraday Discuss Chem Soc 60:291–300

    Article  Google Scholar 

  64. Dake LS, Baer DR, Zachara JM (1989) Surf Interface Anal 14:71–75

    Article  CAS  Google Scholar 

  65. Powell CJ, Jablonski A (2010) NIST Electron Inelastic-Mean-Free-Path Database, Version 12, SRD 71, National Institute of Standards and Technology. Gaithersburg, MD

    Google Scholar 

  66. Briggs D, Seah MP (1990) Practical surface analysis, vol 1, 2nd edn. Wiley, Chichester

    Google Scholar 

  67. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  68. Puchert MK, Timbrell PY, Lamb RN (1996) J Vac Sci Technol A 14:2220–2230

    Article  CAS  Google Scholar 

  69. Zhang L, Wett D, Szargan R, Chasse T (2004) Surf Interface Anal 36:1479–1483

    Article  CAS  Google Scholar 

  70. Säuberlich F, Fritsche J, Hunger R, Klein A (2003) Thin Solid Films 431–432:378–381

    Article  Google Scholar 

  71. Fan JCC, Goodenough JB (1977) J Appl Phys 48:3524–3531

    Article  CAS  Google Scholar 

  72. De la Rosa E, Sepùlveda-Guzman S, Reeja-Jayan B, Torres A, Salas P, Elizondo N, Yacaman MJ (2007) J Phys Chem C 111:8489–8495

    Article  Google Scholar 

  73. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) Appl Surf Sci 158:134–140

    Article  CAS  Google Scholar 

  74. Lee S, Bang S, Park J, Park S, Jeong W, Jeon H (2010) Phys Status Solidi A 207:1845–1849

    Article  CAS  Google Scholar 

  75. Ye JD, Gu SL, Qin F, Zhu SM, Liu SM, Zhou X, Liu W, Hu LQ, Zhang R, Shi Y, Zheng YD, Ye YD (2005) Appl Phys A 81:809–812

    Article  CAS  Google Scholar 

  76. Catlow CRA, Sokol AA, Walsh A (2011) Chem Commun 47:3386–3388

    Article  CAS  Google Scholar 

  77. Li H, Schirra LK, Shim J, Cheun H, Kippelen B, Monti OLA, Bredas J-L (2012) Chem Mater 24:3044–3055

    Article  CAS  Google Scholar 

  78. Önsten A, Stoltz D, Palmgren P, Yu S, Göthelid M, Karlsson UO (2010) J Phys Chem C 114:11157–11161

    Article  Google Scholar 

  79. Lupan O, Pauporté T, Ursaki VV, Tiginyanu IM (2011) Opt Mater 33:914–919

    Article  CAS  Google Scholar 

  80. Gao Y, Nagai M (2006) Langmuir 22:3936–3940

    Article  CAS  Google Scholar 

  81. Zarebska K, Kwiatkowski M, Gniadek M, Skompska M (2013) Electrochim Acta 98:255–262

    Article  CAS  Google Scholar 

  82. Thangaraj N, Wessels BW (1990) J Appl Phys 67:1535–1541

    Article  CAS  Google Scholar 

  83. Almamun Ashrafi ABM, Ueta A, Avramescu A, Kumano H, Suemune I, Ok Y-W, Seong T-Y (2000) Appl Phys Lett 76:550–552

    Article  Google Scholar 

  84. Decremps F, Pellicer-Porres J, Datchi F, Itié JP, Polian A, Baudelet F (2002) Appl Phys Lett 81:4820–4822

    Article  CAS  Google Scholar 

  85. Kim S-K, Jeong S-Y, Cho C-R (2003) Appl Phys Lett 82:562–564

    Article  CAS  Google Scholar 

  86. Cheng Y-C (2011) Appl Surf Sci 258:604–607

    Article  CAS  Google Scholar 

  87. Sharma V, Kumar P, Shrivastava J, Solanki A, Satsangi VR, Dass S, Shrivastav R (2011) J Mater Sci 46:3792–3801

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Daniela Ferro for her kind assistance in taking the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giacomo Marrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrani, A.G., Caprioli, F., Boccia, A. et al. Electrochemically deposited ZnO films: an XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing. J Solid State Electrochem 18, 505–513 (2014). https://doi.org/10.1007/s10008-013-2281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2281-2

Keywords

Navigation