Skip to main content
Log in

Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A GOx/Ag/TiO2 glucose biosensor was achieved by photoreducing Ag nanoparticles on TiO2 nanotube arrays (NTAs) following with adsorption of GOx. The morphology, structure, and element component of Ag/TiO2 NTAs were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffraction. Ag nanoparticles were uniformly deposited on surface of TiO2 NTAs with average size of 15 nm and the size and distribution changed with the immersing time of TiO2 NTAs in AgNO3 aqueous solution. Electrochemical properties of Ag/TiO2 NTAs were characterized by cyclic voltammetry and amperometric detection of H2O2, revealing that TiO2 NTAs with immersing time of 30 min achieve the best electrochemical activity. The GOx/Ag/TiO2 NTAs biosensor with optimum conditions achieves a sensitivity of 0.39μA mM−1 cm−2 with liner range from 0.1 to 4 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leland C, Clark J, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Google Scholar 

  2. Baker SE, Tse KY, Lee CS, Hamers RJ (2006) Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications. Diam Relat Mater 15:433–439

    Article  CAS  Google Scholar 

  3. Niedziolka J, Murphy MA, Marken F, Opallo M (2006) Characterization of hydrophobic carbon nanofiber–silica composite film electrodes for redox liquid immobilization. Electrochim Acta 51:5897–5903

    Article  CAS  Google Scholar 

  4. Wang SF, Xu Q (2007) Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes. Bioelectrochemistry 70:296–300

    Article  Google Scholar 

  5. Ly SY (2006) Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry 68:227–231

    Article  CAS  Google Scholar 

  6. Zhao G, Xu JJ, Chen HY (2006) Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Anal Biochem 350:145–150

    Article  CAS  Google Scholar 

  7. Jänes A, Kurig H, Lust E (2007) Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 45:1226–1233

    Article  Google Scholar 

  8. Shen Q, You SK, Park SG, Jiang H, Guo DD, Chen BA, Wang XM (2008) Electrochemical biosensing for cancer cells based on TiO2/CNT nanocomposites modified electrodes. Electroanalysis 20:2526–2530

    Article  CAS  Google Scholar 

  9. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:1–11

    Article  Google Scholar 

  10. Yang LX, He DM, Cai QY, Grimes CA (2007) Fabrication and catalytic performances of TiO2 nanotube array-supported Co–Ag–Pt nanoparticles. J Phys Chem C 111:8214–8217

    Article  CAS  Google Scholar 

  11. Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28:4667–4672

    Article  CAS  Google Scholar 

  12. Kang Q, Yang LX, Cai QY (2008) An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74:62–65

    Article  CAS  Google Scholar 

  13. Han X, Zhu YH, Yang XL, Li CZ (2010) Electrocatalytic activity of Pt doped TiO2 nanotubes catalysts for glucose determination. J Alloys Compd 500:247–251

    Article  CAS  Google Scholar 

  14. Ngece RF, West N, Ndangili PM, Olowu RA, Williams A, Hendricks N, Mailu S, Baker P, Iwuoha E (2011) a silver nanoparticle/poly (8-anilino-1-naphthalene sulphonic acid) bioelectrochemical biosensor system for the analytical determination of ethambutol. Int J Electrochem Sci 6:1820–1834

    CAS  Google Scholar 

  15. Chang GH, Luo YL, Lu WB, Liao F, Sun XP (2011) Hydrothermal synthesis of ultra-highly concentrated, well-stable Ag nanoparticles and their application for enzymeless hydrogen peroxide detection. J Nanoparticle Res 13:2689–2695

    Article  CAS  Google Scholar 

  16. Khan MJ, Husain Q, Ansari SA (2013) Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Appl Microbiol Biotechnol 97:1513–1522

    Article  CAS  Google Scholar 

  17. Varghese OK, Paulose M, Gong DW, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165

    Article  CAS  Google Scholar 

  18. Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737

    Article  CAS  Google Scholar 

  19. Li HB, Duan XC, Liu GC, Liu XQ (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676

    Article  CAS  Google Scholar 

  20. Jin M, Zhang XT, Nishimoto S, Liu ZY, Tryk DA, Emeline AV, Murakami T, Fujishima A (2007) Light-stimulated composition conversion in TiO2-based nanofibers. J Phys Chem C 111:658–665

    Article  CAS  Google Scholar 

  21. Yu JG, Xiong JF, Cheng B, Liu SW (2005) Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ 60:211–221

    Article  CAS  Google Scholar 

  22. Song XC, Wang X, Zheng YF, Ma R, Yin HY (2011) A hydrogen peroxide electrochemical sensor based on Ag nanoparticles grown on ITO substrate. J Nanoparticle Res 13:5449–5455

    Article  CAS  Google Scholar 

  23. Song XC, Tong YJ, Zheng YF, Yin HY (2012) Hydrothermal synthesis and electrocatalytic application of the Ag nanorods. Curr Nanosci 8:608–611

    Article  CAS  Google Scholar 

  24. Campbell FW, Belding SR, Baron R, Xiao L, Compton RG (2009) Hydrogen peroxide electroreduction at a silver-nanoparticle array: investigating nanoparticle size and coverage effects. J Phys Chem C 113:9053–9062

    Article  CAS  Google Scholar 

  25. Zhang ZJ, Xie YB, Liu Z, Rong F, Wang Y, Fu DG (2011) Covalently immobilized biosensor based on gold nanoparticles modified TiO2 nanotube arrays. J Electroanal Chem 650:241–247

    Article  CAS  Google Scholar 

  26. Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241–247

    Article  CAS  Google Scholar 

  27. Xu GQ, Adeloju SB, Wu YC, Zhang XY (2012) Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Anal Chim Acta 755:100–107

    Article  CAS  Google Scholar 

  28. Tang FQ, Ren XL, Meng XW, Chen D, Jiao J (2005) Using silver nanoparticle to enhance current response of biosensor. Biosens Bioelectron 21:433–437

    Article  Google Scholar 

  29. Pang XY, He DM, Luo SL, Cai QY (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensors Actuators B 137:134–138

    Article  Google Scholar 

  30. Cai QY, Zeng KF, Ruan CM, Desai TA, Grimes CA (2004) A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Anal Chem 76:4038–4043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of China (51102071, 51072044, and 51172059), International Cooperation Project of Anhui Province (10080703017), and the Fundamental Research Funds for the Central Universities (2013HGQC0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangqing Xu or Yucheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, C., Xu, G., Liu, H. et al. Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays. J Solid State Electrochem 18, 163–171 (2014). https://doi.org/10.1007/s10008-013-2257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2257-2

Keywords

Navigation