Skip to main content
Log in

Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The flake-like Li3V2(PO4)3/C has been successfully synthesized by rheological phase method using polyvinyl alcohol (PVA) as template; the Li3V2(PO4)3/C without PVA assistance has been prepared for comparison. X-ray diffraction analysis shows that the two samples are well crystallized, and no impurity phases are detected. The scanning electron microscopy results reveal that there is a significant difference in morphologies between PVA-assisted sample and sample without PVA; the former shows a flake-like morphology, while the latter presents regular granular shape with some agglomeration. Transmission electron microscopy images reveal that Li3V2(PO4)3 particles are coated with a uniform surface carbon layer. The lattice fringes with a spacing of 0.428 nm can be clearly seen from the high-resolution transmission electron microscopy image. The PVA-assisted sample shows a discharge capacity of 120, 110, and 96 mAh g−1 at 1 C, 20 C, and 50 C, respectively; however, the sample without PVA exhibits a lower discharge capacity. Based on the analysis of electrochemical impedance spectroscopy, the lithium ion diffusion coefficients of Li3V2(PO4)3/C and PVA-assisted Li3V2(PO4)3/C are 4.19 × 10−9 and 4.99 × 10−8 cm2 s−1, respectively. In summary, it is demonstrated that using PVA as a template can obtain flake-like morphology and significantly improve the comprehensive electrochemical performances of Li3V2(PO4)3/C cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liang GC, Wang L, Ou XQ, Zhao X, Xu SZ (2008) J Power Sources 184:538–542

    Article  CAS  Google Scholar 

  2. Tang H, Guo XD, Tang Y, Zhong BH, Li LY (2012) Chin J Inorg Chem 28:809–814

    CAS  Google Scholar 

  3. Damen L, Giorgio FD, Monaco S, Veronesi F, Mastragostino M (2012) J Power Sources 218:250–253

    Article  CAS  Google Scholar 

  4. Zhong SK, Chen W, Li YH, Zou ZG, Liu CJ (2010) Trans Nonferrous Metal Soc 20:s275–s278

    Article  CAS  Google Scholar 

  5. Wang LJ, Liu HB, Tang ZY, Ma L, Zhang XH (2012) J Power Sources 204:197–199

    Article  CAS  Google Scholar 

  6. Yan J, Yuan W, Xie H, Tang ZY, Mao WF, Ma L (2012) Mater Lett 71:1–3

    Article  CAS  Google Scholar 

  7. Wei JW, Zhang XF, Liu J, Yang GL, Ge YC, Yu ZJ, Wang RS, Pan XM (2010) Electrochim Acta 55:6879–6884

    Article  Google Scholar 

  8. Li YJ, Hong L, Sun JQ, Wu F, Chen S (2012) Electrochim Acta 85:110–115

    Article  CAS  Google Scholar 

  9. Jian ZL, Zhao L, Wang R, Hu YS, Li H, Chen W, Chen LQ (2012) RSC Adv 2:1751–1754

    Article  CAS  Google Scholar 

  10. Ding ZJ, Zhao L, Suo LM, Jiao Y, Meng S, Hu YS, Wang ZX, Chen LQ (2011) Phys Chem Chem Phys 13:15127–15133

    Article  CAS  Google Scholar 

  11. Yao JH, Wei SS, Zhang PJ, Shen CQ, Aguey-Zinsou KF, Wang LB (2012) J Alloys Compd 532:49–54

    Article  CAS  Google Scholar 

  12. Hao WJ, Zhan HH, Yu J (2012) Mater Lett 83:121–123

    Article  CAS  Google Scholar 

  13. Rui XH, Li C, Chen CH (2009) Electrochim Acta 54:3374–3380

    Article  CAS  Google Scholar 

  14. Fu P, Zhao YM, An XN, Dong YZ, Hou XM (2007) Electrochim Acta 52:5281–5285

    Article  CAS  Google Scholar 

  15. Zhang LL, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) J Phys Chem 116:12401–12408

    CAS  Google Scholar 

  16. Chen QQ, Wang JM, Tang Z, He WC, Shao HB, Zhang JQ (2007) Electrochim Acta 52:5251–5257

    Article  CAS  Google Scholar 

  17. Pan AQ, Liu J, Zhang JG, Xu W, Cao GZ, Nie ZM, Arey BW, Liang SQ (2010) Electrochem Commun 12:1674–1677

    Article  CAS  Google Scholar 

  18. Wang L, Zhang LC, Lieberwirth I, Xu HW, Chen CH (2010) Electrochem Commun 12:52–55

    Article  CAS  Google Scholar 

  19. Jiang T, Du F, Zhang KJ, Wei YJ, Li Z, Wang CZ, Chen G (2010) Solid State Sci 12:1672–1676

    Article  CAS  Google Scholar 

  20. Qiao YQ, Wang XL, Xiang JY, Zhang D, Liu WL, Tu JP (2011) Electrochim Acta 56:2269–2275

    Article  CAS  Google Scholar 

  21. Huang JS, Yang L, Liu KY (2011) Mater Chem Phys 128:470–474

    Article  CAS  Google Scholar 

  22. Jian ZL, Zhao L, Pan HL, Hu YS, Li H, Chen W, Chen LQ (2012) Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  23. Chang CX, Xiang JF, Shi XX, Han XY, Yuan LJ, Sun JT (2008) Electrochim Acta 53:2232–2237

    Article  CAS  Google Scholar 

  24. Nakajima C, Saito T, Yamaya T, Shimoda M (1998) Fuel 77:321–326

    Article  CAS  Google Scholar 

  25. Wang LJ, Tang ZY, Ma L, Zhang XH (2011) Electrochem Commun 13:1233–1235

    Article  CAS  Google Scholar 

  26. Pan AQ, Choi D, Zhang JG, Liang SQ, Cao GZ, Nie ZM, Arey BW, Liu J (2011) J Power Sources 196:3646–3649

    Article  CAS  Google Scholar 

  27. Xie RM, Xiao DB, Yao JN (2002) Acta Phys Chim Sin 18:34–38

    CAS  Google Scholar 

  28. Jiu JT, Li LP, Ge Y, Zhang SR, Tu F, Hua ZR, Nie L (2001) Chin J Inorg Chin J Inorg Chem 17:361–365

    CAS  Google Scholar 

  29. Du XY, He W, Zhang XD, Yue YZ, Liu H, Zhang XG, Min DD, Ge XX, Du Y (2012) J Mater Chem 22:5960–5969

    Article  CAS  Google Scholar 

  30. Zeng RH, Li WS, Lu DS, Huang QM (2007) J Power Sources 174:592–597

    Article  CAS  Google Scholar 

  31. Zhuang QC, Xu SD, Qiu XY, Cui YL, Fang L, Sun SG (2010) Process Chem 22:1044–1057

    CAS  Google Scholar 

  32. Barsoukov E, Kim JH, Yoon CO, Lee H (1998) J Electrochem Soc 145:2711–2717

    Article  CAS  Google Scholar 

  33. Cui Y, Zhao XL, Guo RS (2010) Electrochim Acta 55:922–926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sichuan University Funds for Young Scientists (no. 2011SCU11081) and the Research Fund for the Doctoral Program of Higher Education, the Ministry of Education (no. 20120181120103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tang, Y., Zhong, B. et al. Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 18, 215–221 (2014). https://doi.org/10.1007/s10008-013-2249-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2249-2

Keywords

Navigation