Skip to main content
Log in

Electrochemical reduction of carbon dioxide with lead cathode and zinc anode in dry acetonitrile solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reduction of carbon dioxide (CO2) is investigated in acetonitrile with tetrabutylammonium perchlorate as an electrolyte using a lead cathode and a sacrificial zinc anode, and the product under such a setup is insoluble zinc oxalate at potentials between −2.2 and −2.8 V vs. Ag rod electrode. Preelectrolysis is an effective method to remove the water in the electrolyte, which makes a distinct reduction peak of CO2 appear at −2.6 V vs. Ag on cyclic voltammogram. Even trace amounts of water in the electrolyte can interfere with the faradaic efficiency of reduction of CO2 to oxalate, and the product could be β-ZnC2O4 (in anhydrous solution) or ZnC2O4 · 2H2O (if water exists). The faradaic efficiency for oxalate production also depends on the cathode potential and the temperature, and the maximum is 96.8 % at −2.6 V vs. Ag and 5 °C. This is the highest value of CO2 electrochemical reduction found in the literature under ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liebl MR, Senker J (2013) Chem Mater 25:970–980

    Article  CAS  Google Scholar 

  2. Loganathan S, Tikmani M, Ghoshal AK (2013) Langmuir 29:3491–3499

    Article  CAS  Google Scholar 

  3. Mayoral MC, Andres JM, Gimeno MP (2013) Fuel 106:448–454

    Article  CAS  Google Scholar 

  4. Soussan L, Riess J, Erable B, Delia ML, Bergel A (2013) Electrochem Commun 28:27–30

    Article  CAS  Google Scholar 

  5. Dobrovetsky R, Stephan DW (2013) Angew Chem Int Ed 52:2516–2519

    Article  CAS  Google Scholar 

  6. Prakash GKS, Viva FA, Olah GA (2013) J Power Sources 223:68–73

    Article  CAS  Google Scholar 

  7. Li CW, Kanan MW (2012) J Am Chem Soc 134:7231–7234

    Article  CAS  Google Scholar 

  8. Wu J, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) J Electrochem Soc 159:F353–F359

    Article  CAS  Google Scholar 

  9. Kaneco S, Iiba K, Katsumata H, Suzuki T, Ohta K (2007) J Solid State Electrochem 11:490–495

    Article  CAS  Google Scholar 

  10. Vassil’ev YB, Bagotskii VS, Khazova OA, Maiorova NA (1985) J Electroanal Chem 189:295–309

    Article  Google Scholar 

  11. Lan YC, Wang H, Wu LX, Zhao SF, Gu YQ, Lu JX (2012) J Electroanal Chem 664:33–38

    Article  CAS  Google Scholar 

  12. Yuhas BD, Prasittichai C, Hupp JT, Kanatzidis MG (2011) J Am Chem Soc 133:15854–15857

    Article  CAS  Google Scholar 

  13. Thoi VS, Chang CJ (2011) Chem Commun 47:6578–6580

    Article  CAS  Google Scholar 

  14. Rail MD, Berben LA (2011) J Am Chem Soc 133:18577–18579

    Article  CAS  Google Scholar 

  15. Chen ZF, Chen CC, Weinberg DR, Kang P, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Chem Commun 47:12607–12609

    Article  CAS  Google Scholar 

  16. Eneau-Innocent B, Pasquier D, Ropital F, Leger JM, Kokoh KB (2010) Appl Catal, B 98:65–71

    Article  CAS  Google Scholar 

  17. Cook D, Bartlett PN, Zhang W, Levason W, Reid G, Ke J, Su W, George MW, Wilson J, Smith D, Mallik K, Barrett E, Sazio P (2010) Phys Chem Chem Phys 12:11744–11752

    Article  CAS  Google Scholar 

  18. Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E (2010) Science 327:313–315

    Article  CAS  Google Scholar 

  19. Yao SA, Ruther RE, Zhang LH, Franking RA, Hamers RJ, Berry JF (2012) J Am Chem Soc 134:15632–15635

    Article  CAS  Google Scholar 

  20. Senthil KR, Senthil KS, Anbu KM (2012) Electrochem Commun 25:70–73

    Article  Google Scholar 

  21. Ikeda S, Takagi T, Ito K (1987) Bull Chem Soc Jpn 60:2517–2522

    Article  CAS  Google Scholar 

  22. Ito K, Ikeda S, Yamauchi N, Iida T, Takagi T (1985) Bull Chem Soc Jpn 58:3027–3028

    Article  CAS  Google Scholar 

  23. Ni L, Wang L, Shao B, Wang Y, Zhang W, Jiang Y (2011) J Mater Sci Technol 27:563–569

    Article  CAS  Google Scholar 

  24. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Zahedi MM, Rahimi-Nasrabadi M (2013) Ceram Int 39:819–827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Education for the Fundamental Research Funds for the Central Universities, Jiangsu Province, for the college graduate research and innovation projects (CXLX13_086 and CXLX12_0105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixu Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, W., Zhang, R., Gao, P. et al. Electrochemical reduction of carbon dioxide with lead cathode and zinc anode in dry acetonitrile solution. J Solid State Electrochem 17, 2789–2794 (2013). https://doi.org/10.1007/s10008-013-2186-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2186-0

Keywords

Navigation