Skip to main content
Log in

Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitridated mesoporous Li4Ti5O12 spheres were synthesized by a simple ammonia treatment of Li4Ti5O12 derived from mesoporous TiO2 particles and lithium acetate dihydrate via a solid state reaction in the presence of polyethylene glycol 20000. The carbonization of polyethylene glycol could effectively restrict the growth of primary particles, which was favorable for lithium ions diffusing into the nanosized TiO2 lattice during the solid state reaction to form a pure phase Li4Ti5O12. After a subsequent thermal nitridation treatment, a high conductive thin TiO x N y layer was in situ constructed on the surface of the primary nanoparticles. As a result, the nitridated mesoporous Li4Ti5O12 structure, possessing shorter lithium-ion diffusion path and better electrical conductivity, displays significantly improved rate capability. The discharge capacity reaches 138 mAh g−1 at 10 C rate and 120 mAh g−1 at 20 C rate in the voltage range of 1–3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  3. Zhu GN, Wang YG, Xia YY (2012) Energy Environ Sci 5:6652–6667

    Article  CAS  Google Scholar 

  4. Yoshio M, Wang HY, Fukuda K, Umeno T, Abe T, Ogumi Z (2004) J Mater Chem 14:1754–1758

    Article  CAS  Google Scholar 

  5. Shen LF, Yuan CZ, Luo HJ, Zhang XG, Chen L, Li HS (2011) J Mater Chem 21:14414–14416

    Article  CAS  Google Scholar 

  6. Shen L, Yuan C, Luo H, Zhang X, Xu K, Zhang F (2011) J Mater Chem 21:761–767

    Article  CAS  Google Scholar 

  7. Wang YQ, Guo L, Guo YG, Li H, He XQ, Tsukimoto S, Ikuhara Y, Wan LJ (2012) J Am Chem Soc 134:7874–7879

    Article  CAS  Google Scholar 

  8. Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2008) J Phys Chem B 113:224–230

    Article  Google Scholar 

  9. Yi TF, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) J Power Sources 214:220–226

    Article  CAS  Google Scholar 

  10. Cai R, Yu X, Liu XQ, Shao ZP (2010) J Power Sources 195:8244–8250

    Article  CAS  Google Scholar 

  11. Yi TF, Xie Y, Jiang LJ, Shu J, Yue CB, Zhou AN, Ye MF (2012) RSC Adv 2:3541–3547

    Article  CAS  Google Scholar 

  12. Liu Z, Zhang N, Sun K (2012) J Mater Chem 22:11688–11693

    Article  CAS  Google Scholar 

  13. Jiang C, Ichihara M, Honma I, Zhou H (2007) Electrochim Acta 52:6470–6475

    Article  CAS  Google Scholar 

  14. Lin YS, Tsai MC, Duh JG (2012) J Power Sources 214:314–318

    Article  CAS  Google Scholar 

  15. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  16. Li J, Tang Z, Zhang Z (2005) Electrochem Commun 7:894–899

    Article  CAS  Google Scholar 

  17. Wen Z, Yang X, Huang S (2007) J Power Sources 174:1041–1045

    Article  CAS  Google Scholar 

  18. Huang S, Wen Z, Zhang J, Yang X (2007) Electrochim Acta 52:3704–3708

    Article  CAS  Google Scholar 

  19. Guo X, Wang C, Chen M, Wang J, Zheng J (2012) J Power Sources 214:107–112

    Article  CAS  Google Scholar 

  20. Li H, Zhou H (2012) Chem Commun 48:1201–1217

    Article  CAS  Google Scholar 

  21. Zhu GN, Liu HJ, Zhuang JH, Wang CX, Wang YG, Xia YY (2011) Energy Environ Sci 4:4016–4022

    Article  CAS  Google Scholar 

  22. Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK (2011) Energy Environ Sci 4:1345–1351

    Article  CAS  Google Scholar 

  23. Tang Y, Yang L, Qiu Z, Huang J (2009) J Mater Chem 19:5980–5984

    Article  CAS  Google Scholar 

  24. Shen L, Yuan C, Luo H, Zhang X, Xu K, Xia Y (2010) J Mater Chem 20:6998–7004

    Article  CAS  Google Scholar 

  25. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  26. Pan H, Zhao L, Hu YS, Li H, Chen L (2012) Chem Sus Chem 5:526–529

    CAS  Google Scholar 

  27. Dong S, Chen X, Gu L, Zhou X, Xu H, Wang H, Liu Z, Han P, Yao J, Wang L, Cui G, Chen L (2010) ACS Appl Mater Interf 3:93–98

    Article  Google Scholar 

  28. Park KS, Benayad A, Kang DJ, Doo SG (2008) J Am Chem Soc 130:14930–14931

    Article  CAS  Google Scholar 

  29. Drygas M, Czosnek C, Paine RT, Janik JF (2006) Chem Mater 18:3122–3129

    Article  CAS  Google Scholar 

  30. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Chem Mater 22:3843–3853

    Article  CAS  Google Scholar 

  31. Gicquel A, Laidani N, Saillard P (1990) Pure Appl Chem 62:1743–1750

    Article  CAS  Google Scholar 

  32. Zhong LS, Hu JS, Wan LJ, Song WG (2008) Chem Commun 10:1184–1186

    Article  Google Scholar 

  33. Wan Z, Cai R, Jiang S, Shao Z (2012) J Mater Chem 22:17773–17781

    Article  CAS  Google Scholar 

  34. Ding Z, Zhao L, Suo L, Jiao Y, Meng S, Hu YS, Wang Z, Chen L (2011) Phys Chem Chem Phys 13:15127–15133

    Article  CAS  Google Scholar 

  35. Wang Y, Liu H, Wang K, Eiji H, Wang Y, Zhou H (2009) J Mater Chem 19:6789–6795

    Article  CAS  Google Scholar 

  36. Zhang K, Wang H, He X, Liu Z, Wang L, Gu L, Xu H, Han P, Dong S, Zhang C, Yao J, Cui G, Chen L (2011) J Mater Chem 21:11916–11922

    Article  CAS  Google Scholar 

  37. Zhang CJ, He X, Kong QS, Li H, Hu H, Wang HB, Gu L, Wang L, Cui GL, Chen LQ (2012) Cryst Eng Comm 14:4344–4349

    Article  CAS  Google Scholar 

  38. Subramanian V, Zhu HW, Charan M, Kai-Hsuan H, Liu Z, Suenaga K, Wei BQ (2009) ACS Nano 3:2177–2184

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the support of the “100 Talents” program of the Chinese Academy of Sciences, National Program on Key Basic Research Project of China (973 Program) (no. MOST2011CB935700), the National Natural Science Foundation (grant nos. 21271180, 21275151, 51202266, and 51272113), and the Qingdao Key Lab of solar energy utilization and energy storage technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guicun Li or Guanglei Cui.

Additional information

Yunyan Zhao and Shuping Pang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1071 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Pang, S., Zhang, C. et al. Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material. J Solid State Electrochem 17, 1479–1485 (2013). https://doi.org/10.1007/s10008-013-2026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2026-2

Keywords

Navigation