Skip to main content
Log in

Adsorption and photoelectrocatalytic characteristics of organics on TiO2 nanotube arrays

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The adsorption and photoelectrocatalytic characteristics of four different kinds of organic compounds (d-fructose, glutamic acid, fumaric acid, and nicotinic acid) on TiO2 nanotube arrays (TNAs) were investigated using a thin-layer cell, wherein the compounds were rapidly and exhaustively oxidized. The photogenerated current–time (I pht) profiles were found to be related to the adsorption, the degradation rate, and the reaction mechanism. The relationship between the initial organic compounds concentrations and photocurrent peaks (I 0ph) fit the Langmuir type adsorption model well, thereby confirming that the adsorption of organic compounds on TNAs was via monolayer adsorption. The adsorption equilibrium constant was obtained from the Langmuir equation. The results indicate that the adsorption performance of the organic compounds on TNAs were in the following order: nicotinic acid < d-fructose < glutamic acid < fumaric acid. The degradation of organic compounds on TNAs was classified as either easy or difficult based on the time of complete mineralization (t end) of the organic samples under an equal holes consumption; the degree of degradation were as follows: fumaric acid < d-fructose < glutamic acid < nicotinic acid. The photoelectrocatalytic characteristics of the organic compounds on TNAs were also discussed by analyzing the changes in the I ph t profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carey JH, Lawrence J, Tosine HM (1976) B Environ Contam Tox 16:697–701

    Article  CAS  Google Scholar 

  2. Li XZ, Liu HL, Yue PT, Sun (2000) Environ Sci Technol 34:4401–4406

    Article  CAS  Google Scholar 

  3. Kim DH, Anderson MA (1994) Environ Sci Technol 28:479–483

    Article  CAS  Google Scholar 

  4. Zhu LS, Ma TT, Wang JH, Xie H, Wang J, Xin CY, Shao B (2011) Soil Sediment Contam 20:87–97

    Article  CAS  Google Scholar 

  5. Liu CL (2002) Colloid Surface A 201:231–235

    Article  CAS  Google Scholar 

  6. Zhang X, Udagawa K, Liu Z, Nishimoto S, Xu C, Liu Y, Sakai H, Abe M, Murakami T, Fujishma A (2009) J Photoch Photobio A 202:39–47

    Article  CAS  Google Scholar 

  7. Wang C, Zhang X, Shao C, Zhang Y, Yang J, Sun P, Liu X, Liu H, Liu Y, Xie T, Wang D (2011) J Colloid Interf Sci 363:157–164

    Article  CAS  Google Scholar 

  8. Beranek R, Kisch H (2007) Electrochem Commun 9:761–766

    Article  CAS  Google Scholar 

  9. Kikkawa H, O'Regan B, Anderson MA (1991) J Electroanal Chem 309:91–101

    Article  CAS  Google Scholar 

  10. Li GL, Yuan J, Han BY, Jiang L, Shangguan WF (2010) Int J of hydrogen energ 35:7073–7079

    Article  CAS  Google Scholar 

  11. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Adv Funct Mater 20:2165–2174

    Article  CAS  Google Scholar 

  12. Dai GP, Yu JG, Liu G (2011) J Phys Chem C 115:7339–7346

    Article  CAS  Google Scholar 

  13. Meng QQ, Wang JG, Xie Q, Dong HQ, Li XN (2011) Catal Today 165:145–149

    Article  CAS  Google Scholar 

  14. Zhang AY, Zhou MH, Liu L, Wang W, Jiao YL, Zhou QX (2010) Electrochim Acta 55:4436–4440

    Article  Google Scholar 

  15. Palmisano G, Loddo V, Nazer HHE, Yurdakal S, Augugliaro V, Ciriminna R, Pagliaro M (2009) Chem Eng J 155:339–346

    Article  CAS  Google Scholar 

  16. Zhang WB, An TC, Xiao XM, Fu JM, Sheng GY, Cui MH, Li GY (2003) Appl Catal A-Gen 255:221–229

    Article  CAS  Google Scholar 

  17. Liu YB, Li JH, Zhou BX, Chen HC, Wang ZS, Cai WM (2011) Chem Commun 47:10314–10316

    Article  CAS  Google Scholar 

  18. Liu YB, Li JH, Zhou BX, Li XJ, Chen HC, Chen QP, Wang ZS, Li L, Wang JL, Cai WM (2011) Water Res 45:3991–3998

    Article  CAS  Google Scholar 

  19. An T, Li G, Zhu X, Fu J, Sheng G, Kun Z (2005) Appl Catal A-Gen 279:247–256

    Article  CAS  Google Scholar 

  20. Wang HJ, Wu XJ, Wang YL, Jiao ZB, Yan SW, Huang LH (2011) J Catal 32:637–642

    Google Scholar 

  21. Yu JG, Wang B (2010) Appl Catal B-Environ 94:95–302

    Article  Google Scholar 

  22. Krysa J, Waldner G, Mest’ankova H, Jirkovsky J, Grabner G (2006) Appl Catal B- Environ 64:290–301

    Article  CAS  Google Scholar 

  23. Chen SY (2007) Kinetics of catalytic reactions. Chemical Industry, Beijing

    Google Scholar 

  24. Zheng Q, Zhou BX, Bai J, Li LH, Jin ZJ, Zhang JL, Li JH, Liu YB, Cai WM, Zhu XY (2008) Adv Mater 20:1044

    Article  CAS  Google Scholar 

  25. Zhang JL, Zhou BX, Zheng Q, Li JH, Bai J, Liu YB, Cai WM (2009) Water Res 43:1986–1992

    Article  CAS  Google Scholar 

  26. Liu BC, Li JH, Zhou BX, Bai J, Liu YB, Cai WM (2010) Chi J Catal 31:163–170

    Article  Google Scholar 

  27. Zhao HJ, Jiang DL, Zhang SQ, Catterall K, John R (2004) Anal Chem 76:155–160

    Article  CAS  Google Scholar 

  28. Chen HC, Zhang JL, Chen QP, Li JH, Li D, Dong CP, Liu YB, Zhou BX, Shang SC, Cai WM (2012) Anal Methods 4:1790–1796

    Article  CAS  Google Scholar 

  29. Zhao HJ, Jiang DH, Zhang SQ, Wen W (2007) J Catal 250:102–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National High Technology Research and Development Program of China (863) (2009AA063003), the National Nature Science Foundation of China (no. 20 677039), and R&D foundation of Shanghai Jiao Tong University. The authors would like to acknowledge Instrumental analysis center of Shanghai Jiao Tong University for materials characterization

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Li, D., Li, X. et al. Adsorption and photoelectrocatalytic characteristics of organics on TiO2 nanotube arrays. J Solid State Electrochem 16, 3907–3914 (2012). https://doi.org/10.1007/s10008-012-1837-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1837-x

Keywords

Navigation