Skip to main content
Log in

Nickel oxide/expanded graphite nanocomposite electrodes for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel oxide/expanded graphite (NiO/EG) nanocomposites with different loading of EG were prepared through chemically depositing Ni(OH)2 in EG followed by thermal annealing and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) isotherm and electrochemical measurements. The prepared NiO/EG composites were found to be crystalline and highly porous with high specific surface area and pore volume. SEM analysis reveals uniform porous morphology for NiO in the NiO/EG-60 nanocomposites which shows good specific capacitance (510 F g−1) at a current density of 100 mA g−1 in 6 mol L−1 KOH measured by chronopotentiometry employing a three-electrode system. The specific capacitance retention of the NiO/EG-60 nanocomposites was found to be ca. 95% after 500 continuous galvanostatic charge–discharge cycles, indicating that the NiO/EG nanocomposites can become promising electro-active materials for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–377

    Article  Google Scholar 

  2. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  3. Zheng YZ, Ding HY, Zhang ML (2008) Thin Solid Films 516:7381–7385

    Article  CAS  Google Scholar 

  4. Gao Y, Chen S, Cao D, Wang G, Yin J (2010) J Power Sources 195:1757–1760

    Article  CAS  Google Scholar 

  5. Abdolmohammad-Zadeh H, Rezvani Z, Sadeghi GH, Zorufi E (2011) Anal Chim Acta 685:212–219

    Article  CAS  Google Scholar 

  6. Snook GA, Kao P, Best AS (2011) J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  7. Nam KW, Lee ES, Kim JH, Lee YH, Kim KB (2005) J Electrochem Soc 152:A2123–A2129

    Article  Google Scholar 

  8. Wu JB, Li ZG, Lin Y (2011) Electrochim Acta 56:2116–2121

    Article  CAS  Google Scholar 

  9. Cheng J, Cao GP, Yang YS (2006) J Power Sources 159:734–741

    Article  CAS  Google Scholar 

  10. Prasad KR, Miura N (2004) Appl Phys Lett 85:4199–4201

    Article  CAS  Google Scholar 

  11. Jiao F, Hill AH, Harrison A, Berko A, Chadwick AV, Bruce PG (2008) J Am Chem Soc 130:5262–5266

    Article  CAS  Google Scholar 

  12. Xu J, Gao L, Cao JY, Wang WC, Chen ZD (2010) Electrochim Acta 56:732–736

    Article  CAS  Google Scholar 

  13. Meher SK, Justin P, Rao GR (2010) Electrochim Acta 55:8388–8396

    Article  CAS  Google Scholar 

  14. Cao CY, Guo W, Cui ZM, Song WG, Cai W (2011) J Mater Chem 21:3204–3209

    Article  CAS  Google Scholar 

  15. Inamdar AI, Kim YS, Pawar SM, Kim JH, Im H, Kim H (2011) J Power Sources 196:2393–2397

    Article  CAS  Google Scholar 

  16. Lee JY, Liang K, An KH, Lee YH (2005) Synth Met 150:153–157

    Article  CAS  Google Scholar 

  17. Lin P, She Q, Hong B, Liu X, Shi Y, Shi Z, Zheng M, Dong Q (2010) J Electrochem Soc 157:A818–A823

    Article  CAS  Google Scholar 

  18. Gao B, Yuan CZ, Su LH, Chen L, Zhang XG (2009) J Solid State Electrochem 13:1251–1257

    Article  CAS  Google Scholar 

  19. Feng J, Zhao J, Tang B, Liu P, Xu J (2010) J Solid State Chem 183:2932–2936

    Article  CAS  Google Scholar 

  20. Yuan GH, Jiang ZH, Aramata A, Gao YZ (2005) Carbon 43:2913–2917

    Article  CAS  Google Scholar 

  21. Tao B, Zhang J, Miao F, Hui S, Wan L (2010) Electrochim Acta 55:5258–5262

    Article  CAS  Google Scholar 

  22. Liu XM, Zhang XG (2004) Electrochim Acta 49:229–232

    Article  CAS  Google Scholar 

  23. Deng JJ, Deng JC, Liu ZL, Deng HR, Liu B (2009) J Mater Sci 44:2828–2835

    Article  CAS  Google Scholar 

  24. Xie Y, Huang C, Zhou L, Liu Y, Huang H (2009) Compos Sci Techn 69:2108–2114

    Article  CAS  Google Scholar 

  25. Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) Chem Eur J 17:10898–10905

    Article  CAS  Google Scholar 

  26. Kottegoda IRM, Idris NH, Lu L, Wang JZ, Liu HK (2011) Electrochim Acta 56:5815–5822

    Article  CAS  Google Scholar 

  27. Ji Z, Wu J, Shen X, Zhou H, Xi H (2011) J Mater Sci 46:1190–1195

    Article  CAS  Google Scholar 

  28. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) J Mater Chem 21:18792–18798

    Article  CAS  Google Scholar 

  29. Ka BH, Oh SM (2008) J Electrochem Soc 155:A685–A692

    Article  CAS  Google Scholar 

  30. Bhattacharya A, Hazra A, Chatterjee S, Sen P, Laha S, Basumallick I (2004) J Power Sources 136:208–210

    Article  CAS  Google Scholar 

  31. Krawczyk P, Skowroński JM (2010) J Appl Electrochem 40:91–98

    Article  CAS  Google Scholar 

  32. Xu J, Gao L, Cao J, Wang W, Chen Z (2011) J Solid State Electrochem 15:2005–2011

    Article  CAS  Google Scholar 

  33. Li J, Da H, Liu Q, Liu S (2006) Mater Lett 60:3927–3930

    Article  CAS  Google Scholar 

  34. Shornikova ON, Sorokina NE, Avdeev VV (2007) Inorg Mater 43:938–944

    Article  CAS  Google Scholar 

  35. Azadi P, Farnood R, Meier E (2010) J Phys Chem A 114:3962–3968

    Article  CAS  Google Scholar 

  36. Afanasov IM, Shornikova ON, Avdeev VV, Lebedev OI, Tendeloo GV, Matveev AT (2009) Carbon 47:513–518

    Article  CAS  Google Scholar 

  37. Dhakate SR, Mathur RB, Sharma S, Borah M, Dhami TL (2009) Energy Fuel 23:934–941

    Article  CAS  Google Scholar 

  38. Raut BT, Pawar SG, Chougule MA, Sen S, Patil VB (2011) J Alloys Compd 509:9065–9070

    Article  CAS  Google Scholar 

  39. Wu MS, Huang YA, Yang CH (2008) J Electrochem Soc 11:A798–A805

    Article  Google Scholar 

  40. Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Electrochem Commun 9:869–874

    Article  CAS  Google Scholar 

  41. Shen C, Wang X, Zhang W, Kang F (2011) J Power Sources 196:10465–10471

    Article  CAS  Google Scholar 

  42. Liu XM, Zhang XG, Fu SY (2006) Mater Res Bull 41:620–627

    Article  CAS  Google Scholar 

  43. Morishita T, Soneda Y, Hatori H, Inagaki M (2007) Electrochim Acta 52:2478–2484

    Article  CAS  Google Scholar 

  44. Luo JM, Gao B, Zhang XG (2008) Mater Res Bull 43:1119–1125

    Article  CAS  Google Scholar 

  45. Yuan A, Zhang Q (2006) Electrochem Commun 8:1173–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foundation of China (21003015 and 21103014), the Science Foundation of Jiangsu Province (BE201113 and 2011Z0062), the Science Foundation of Changzhou (CJ20115020), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Gu, X., Cao, J. et al. Nickel oxide/expanded graphite nanocomposite electrodes for supercapacitor application. J Solid State Electrochem 16, 2667–2674 (2012). https://doi.org/10.1007/s10008-012-1689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1689-4

Keywords

Navigation