Skip to main content
Log in

Influence of ultrathin poly-(3,4-ethylenedioxythiophene) (PEDOT) film supports on the electrodeposition and electrocatalytic activity of discrete platinum nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Coating a carbon electrode surface, specifically highly oriented pyrolytic graphite (HOPG) with an ultrathin film of poly-(3,4-ethylenedioxythiophene), PEDOT, provides a support on which a high density of uniformly dispersed Pt nanoparticles (NPs) can readily be formed by electrodeposition. The NPs tend to be much smaller, have a higher surface coverage, better dispersion and show a much lower tendency to aggregate, than Pt NPs produced under identical electrochemical conditions on HOPG alone. The electrocatalytic activity of the NPs was investigated for methanol (MeOH) and formic acid (HCOOH) oxidation. Significantly, for similarly prepared particles, Pt NP-PEDOT arrays exhibited higher catalytic activity (in terms of current density, based on the Pt area), towards MeOH oxidation, by an order of magnitude, and towards HCOOH oxidation at high potentials, than Pt NPs supported on native HOPG. These findings can be rationalised in terms of the enhanced oxidation of adsorbed CO, a key reaction intermediate and a catalyst poison. This research provides strong evidence that employing conducting polymers, such as PEDOT, as a support substrate, can greatly improve particular catalytic reactions, allowing for better catalyst utilisation in fuel cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chan K-Y, Ding J, Ren J, Cheng S, Tsang KY (2004) J Mater Chem 14:505–516

    Article  CAS  Google Scholar 

  2. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  3. Daniel M-C, Astruc D (2003) Chem Rev 104:293–346

    Article  Google Scholar 

  4. Shan J, Tenhu H (2007) Chem Commun 44:4580–4598

    Article  Google Scholar 

  5. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433–14440

    Article  CAS  Google Scholar 

  6. Scheijen FJE, Beltramo GL, Hoeppener S, Housmans THM, Koper MTM (2008) J Solid State Electrochem 12:483–495

    Google Scholar 

  7. Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) J Am Chem Soc 132:5622–5624

    Article  Google Scholar 

  8. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  9. Litster S, McLean G (2004) J Power Sources 130:61–76

    Article  CAS  Google Scholar 

  10. Rao V, Simonov PA, Savinova ER, Plaksin GV, Cherepanova SV, Kryukova GN, Stimming U (2005) J Power Sources 145:178–187

    Article  CAS  Google Scholar 

  11. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) J Power Sources 195:4634–4640

    Article  CAS  Google Scholar 

  12. Antolini E, Gonzalez ER (2009) Applied Catalysis A: General 365:1–19

    Article  CAS  Google Scholar 

  13. Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Chem Mater 16:4128–4134

    Article  CAS  Google Scholar 

  14. Bensebaa F, Farah AA, Wang D, Bock C, Du X, Kung J, Le Page Y (2005) J Phys Chem B 109:15339–15344

    Article  CAS  Google Scholar 

  15. Salavagione HJ, Sanchís C, Morallón E (2007) J Phys Chem C 111:12454–12460

    Article  CAS  Google Scholar 

  16. Choi YS, Joo SH, Lee S-A, You DJ, Kim H, Pak C, Chang H, Seung D (2006) Macromolecules 39:3275–3282

    Article  CAS  Google Scholar 

  17. Selvaraj V, Alagar M (2007) Electrochem Commun 9:1145–1153

    Article  CAS  Google Scholar 

  18. O'Mullane AP, Dale SE, Macpherson JV, Unwin PR (2004) Chem Commun 14:1606–1607

    Article  Google Scholar 

  19. O’Mullane AP, Dale SE, Day TM, Wilson NR, Macpherson JV, Unwin PR (2006) J Solid State Electrochem 10:792–807

    Article  Google Scholar 

  20. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83–89

    Article  CAS  Google Scholar 

  21. Wang H, Löffler T, Baltruschat H (2001) J Appl Electrochem 31:759–765

    Article  CAS  Google Scholar 

  22. Wang H, Wingender C, Baltruschat H, Lopez M, Reetz MT (2001) J Electroanal Chem 509:163–169

    Article  CAS  Google Scholar 

  23. Léger JM (2001) J Appl Electrochem 31:767–771

    Article  Google Scholar 

  24. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2002) J Phys Chem B 106:12938–12947

    Article  CAS  Google Scholar 

  25. Lai SCS, Lebedeva NP, Housmans THM, Koper MTM (2007) Top Catal 46:320–333

    Article  CAS  Google Scholar 

  26. Markovic NM, Ross PN (2002) Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  27. Capon A, Parsons R (1973) J Electroanal Chem 45:205–231

    Article  CAS  Google Scholar 

  28. Capon A, Parsons R (1973) J Electroanal Chem 44:239–254

    Article  CAS  Google Scholar 

  29. Wieckowski A, Sobkowski J (1975) J Electroanal Chem 63:365–377

    Article  CAS  Google Scholar 

  30. Zhou W, Du Y, Zhang H, Xu J, Yang P (2010) Electrochim Acta 55:2911–2917

    Article  CAS  Google Scholar 

  31. Patra S, Munichandraiah N (2008) Langmuir 25:1732–1738

    Article  Google Scholar 

  32. Kuo C-W, Huang L-M, Wen T-C, Gopalan A (2006) J Power Sources 160:65–72

    Article  CAS  Google Scholar 

  33. Vercelli B, Zotti G, Berlin A (2009) J Phys Chem C 113:3525–3529

    Article  CAS  Google Scholar 

  34. Pandey RK, Lakshminarayanan V (2010) J Phys Chem C 114:8507–8514

    Article  CAS  Google Scholar 

  35. Penner RM (2002) J Phys Chem B 106:3339–3353

    Article  CAS  Google Scholar 

  36. Li Q, Brown MA, Hemminger JC, Penner RM (2006) Chem Mater 18:3432–3441

    Article  CAS  Google Scholar 

  37. Bayati M, Abad JM, Nichols RJ, Schiffrin DJ (2010) J Phys Chem C 114:18439–18448

    Article  CAS  Google Scholar 

  38. Lu G, Zangari G (2006) Electrochim Acta 51:2531–2538

    Article  CAS  Google Scholar 

  39. Brülle T, Stimming U (2009) J Electroanal Chem 636:10–17

    Article  Google Scholar 

  40. Ventosa E, Palacios JL, Unwin PR (2008) Electrochem Commun 10:1752–1755

    Article  CAS  Google Scholar 

  41. Day TM, Unwin PR, Macpherson JV (2006) Nano Lett 7:51–57

    Article  Google Scholar 

  42. Boxley CJ, White HS, Lister TE, Pinhero PJ (2002) J Phys Chem B 107:451–458

    Article  Google Scholar 

  43. Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC, Penner RM (2003) ChemPhysChem 4:131–138

    Article  CAS  Google Scholar 

  44. Li F, Ciani I, Bertoncello P, Unwin PR, Zhao J, Bradbury CR, Fermin DJ (2008) J Phys Chem C 112:9686–9694

    Article  CAS  Google Scholar 

  45. Trasatti S, Petrii OA (1992) J Electroanal Chem 327:353–376

    Article  CAS  Google Scholar 

  46. Doña Rodríguez JM, Herrera Melián JA, Pérez Peña J (2000) J Chem Educ 77:1195–1197

    Article  Google Scholar 

  47. Cherstiouk OV, Simonov PA, Savinova ER (2003) Electrochim Acta 48:3851–3860

    Article  CAS  Google Scholar 

  48. RodrIguez-Nieto FJ, Morante-Catacora TY, Cabrera CR (2004) J Electroanal Chem 571:15–26

    Article  CAS  Google Scholar 

  49. Bayati M, Abad JM, Bridges CA, Rosseinsky MJ, Schiffrin DJ (2008) J Electroanal Chem 623:19–28

    Article  CAS  Google Scholar 

  50. Bergamaski K, Pinheiro ALN, Teixeira-Neto E, Nart FC (2006) J Phys Chem B 110:19271–19279

    Article  CAS  Google Scholar 

  51. Frelink T, Visscher W, van Veen JAR (1995) J Electroanal Chem 382:65–72

    Article  Google Scholar 

  52. Chang SC, Leung LWH, Weaver MJ (1990) J Phys Chem 94:6013–6021

    Article  CAS  Google Scholar 

  53. Kumar S, Zou S (2008) Langmuir 25:574–581

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the following for support of this work: (1) equipment from Birmingham Science City (West Midlands centre for Advanced Materials, co-supported by the European Regional Development Fund; Hydrogen Energy Project); (2) COST D36; (3) the National Physical Laboratory (NPL) and EPSRC for support for HVP; (4) the EPSRC for support of SCSL, PRU and JVM (EP/H0239091); (5) Ministerio de Ciencia c Innovaciόn (CTO2010-17127) and Junta de Castilla y León (GR-71, BU006A09); (6) the Academy of Finland (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick R. Unwin.

Additional information

Dedicated to Professor George Inzelt on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patten, H.V., Ventosa, E., Colina, A. et al. Influence of ultrathin poly-(3,4-ethylenedioxythiophene) (PEDOT) film supports on the electrodeposition and electrocatalytic activity of discrete platinum nanoparticles. J Solid State Electrochem 15, 2331–2339 (2011). https://doi.org/10.1007/s10008-011-1446-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1446-0

Keywords

Navigation