Skip to main content
Log in

A solid-contact Pb2+-selective polymeric membrane electrode with Nafion-doped poly(pyrrole) as ion-to-electron transducer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conducting polymer poly(pyrrole) (PPy) doped with Nafion was successfully used as ion-to-electron transducer in the construction of a solid-contact Pb2+-selective polymeric membrane electrode. The Nafion dopant can effectively increase the capacitance of the conducting polymer and improve the mechanical robustness of the coating. The transducer layer, PPy-Nafion, characterized by cyclic voltammetry and electrochemical impedance spectroscopy, exhibits a sufficiently high bulk (redox) capacitance and fast ion and electron transport process. The new Pb2+-selective polymeric membrane electrode, based on PPy-Nafion film as solid contact, shows stable Nernstian characteristics in Pb(NO3)2 solution within the concentration range of 1.0 × 10−7–1.0 × 10−3 M, and the detection limit is 4.3 × 10−8 M. The potential stability of the electrode and the influence of the interfacial water layer were also evaluated by chronopotentiometry and potentiometric water layer test, respectively. The results show that the solid-contact Pb2+-selective electrode, based on PPy-Nafion film as ion-to-electron transducer, can effectively overcome the potential drift and reduce the water layer between the PPy-Nafion transducer layer and the ion-selective membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bakker E, Pretsch E (2001) Trends Anal Chem 20:11

    CAS  Google Scholar 

  2. Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329

    Article  CAS  Google Scholar 

  3. Lingenfelter P, Bedlechowicz-Sliwakowska I, Sokalski T, Maj-Zurawska M, Lewenstam A (2006) Anal Chem 78:6783

    Article  CAS  Google Scholar 

  4. Sokalski T, Kucza W, Danielewski M, Lewenstam A (2009) Anal Chem 81:5016

    Article  CAS  Google Scholar 

  5. Sokalski T, Ceresa A, Zwickl T, Pretsch E (1997) J Am Chem Soc 119:11347

    Article  CAS  Google Scholar 

  6. Qin W, Zwickl T, Pretsch E (2000) Anal Chem 72:3236

    Article  CAS  Google Scholar 

  7. Ceresa A, Sokalski T, Pretsch E (2001) J Electroanal Chem 501:70

    Article  CAS  Google Scholar 

  8. Janata J (2009) Principles of chemical sensors. Springer, Dordrecht Heidelberg London New York, p 152

    Book  Google Scholar 

  9. Bobacka J (1999) Anal Chem 71:4932

    Article  CAS  Google Scholar 

  10. Cadogan A, Gao Z, Lewenstam A, Ivaska A, Diamond D (1992) Anal Chem 64:2496

    Article  CAS  Google Scholar 

  11. Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Anal Chem 78:1318

    Article  CAS  Google Scholar 

  12. Crespo GA, Macho S, Rius FX (2008) Anal Chem 80:1316

    Article  CAS  Google Scholar 

  13. Lai C-Z, Fierke MA, Stein A, Buhlmann P (2007) Anal Chem 79:4621

    Article  CAS  Google Scholar 

  14. Vazquez M, Danielsson P, Bobacka J, Lewenstam A, Ivaska A (2004) Sensor Actuat B Chem 97:182

    Article  Google Scholar 

  15. Migdalski J, Blaz T, Lewenstam A (1996) Anal Chim Acta 322:141

    Article  CAS  Google Scholar 

  16. Pandey PC, Singh G, Srivastava PK (2002) Electroanalysis 14:427

    Article  CAS  Google Scholar 

  17. Han WS, Yoo SJ, Kim SH, Hong TK, Chung KC (2003) Anal Sci 19:357

    Article  CAS  Google Scholar 

  18. Kim BC, Ko JM, Wallace GG (2008) J Power Sources 177:665

    Article  CAS  Google Scholar 

  19. Lisak G, Sokalski T, Bobacka J, Harju L, Lewenstam A (2010) Talanta 83:436

    Article  CAS  Google Scholar 

  20. Lisak G, Wagner M, Kvarnström C, Bobacka J, Ivaska A, Lewenstam A (2010) Electroanalysis 22:2794

    Article  CAS  Google Scholar 

  21. Bakker E (1996) J Electrochem Soc 143:L83

    Article  CAS  Google Scholar 

  22. Li G, Pickup PG (1999) J Phys Chem B 103:10143

    Article  CAS  Google Scholar 

  23. MacDonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  24. Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17

    Article  CAS  Google Scholar 

  25. Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Anal Chim Acta 523:53

    Article  CAS  Google Scholar 

  26. Jasielec JJ, Sokalski T, Filipek R, Lewenstam A (2010) Electrochim Acta 55:6836

    Article  CAS  Google Scholar 

  27. Fibbioli M, Morf WE, Badertscher M, Rooij NFd, Pretsch E (2000) Electroanalysis 12:1286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese Academy of Sciences (KZCX2-YW-410), the National Natural Science Foundation of China (40776058), the National 863 High Technology Project of the Ministry of Science and Technology of China (2007AA09Z103), the Outstanding Youth Natural Science Foundation of Shandong Province (JQ200814), the Taishan Scholar Program of Shandong Province, the Natural Science Foundation of Shandong Province (2008ZRA06004), and the Science and Technology Development Project of Yantai City (2009164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, T., Pan, D. & Qin, W. A solid-contact Pb2+-selective polymeric membrane electrode with Nafion-doped poly(pyrrole) as ion-to-electron transducer. J Solid State Electrochem 16, 499–504 (2012). https://doi.org/10.1007/s10008-011-1358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1358-z

Keywords

Navigation