Skip to main content
Log in

Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline of low molecular weight (ca. 10 kDa) is combined with cellulose nanofibrils (sisal, 4–5 nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4 nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline–nanocellulose composite. Measurements with a polyaniline–nanocellulose film applied across an ITO junction (a 700 nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2 V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wertz JL, Mercier JP, Bédué O (2010) Cellulose science and technology. EFPL, Lausanne

    Google Scholar 

  2. Macdiarmid AG, Epstein AJ (1995) Synth Metals 69:85

    Article  CAS  Google Scholar 

  3. Liu P, Zhang L (2009) Crit Rev Solid State Mater Sci 34:75

    Article  CAS  Google Scholar 

  4. Kim SH, Oh KW, Choi JH (2010) J Appl Polym Sci 116:2601

    CAS  Google Scholar 

  5. Houlton A, Pike AR, Galindo MA, Horrocks BR (2009) Chem Commun 14:1797–1806

    Article  Google Scholar 

  6. Tran HD, Li D, Kaner RB (2009) Adv Mater 21:1487

    Article  CAS  Google Scholar 

  7. Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277

    Article  CAS  Google Scholar 

  8. Negi YS, Adhyapak PV (2002) J Macromol Sci Polym Rev C42:35

    Article  CAS  Google Scholar 

  9. Wallace GG, Teasdale PR, Spinks GM, Kane-Maguire LAP (2008) Conductive electroactive polymers. CRC, New York

    Book  Google Scholar 

  10. Greef R, Kalaji M, Peter LM (1989) Farad Disc 88:277

    Article  CAS  Google Scholar 

  11. Tanami G, Gutkin V, Mandler D (2010) Langmuir 26:4239

    Article  CAS  Google Scholar 

  12. Abu YM, Aoki K (2005) Electrochim Acta 50:3634

    Article  CAS  Google Scholar 

  13. DeLongchamp DM, Hammond PT (2005) In: Jenekhe SA, Kiserow DJ (eds) Chromogenic phenomena in polymers—tunable optical properties. ACS Symp. Ser. 888:18

  14. Žic M (2009) J Electroanal Chem 635:29

    Article  Google Scholar 

  15. Krinichnyi VI, Tokarev SV, Roth HK, Schrodner M, Wessling B (2005) Synth Metals 152:165

    Article  CAS  Google Scholar 

  16. Mo ZL, Zhao ZL, Chen H, Niu GP, Shi HF (2009) Carbohydrate Polym 75:660

    Article  CAS  Google Scholar 

  17. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Soft Matter 4:2492

    Article  CAS  Google Scholar 

  18. van den Berg O, Schroeter M, Capadona JR, Weder C (2007) J Mater Chem 17:2746

    Article  Google Scholar 

  19. John A, Mahadeva SK, Kim J (2010) Smart Mater Struct 19:045011/1

    CAS  Google Scholar 

  20. Lin DS, Chou CT, Chen YW, Kuo KT, Yang SM (2006) J Appl Polym Sci 100:4023

    Article  CAS  Google Scholar 

  21. Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts WJ (2009) J Nanosci Nanotechnol 9:2917

    Article  CAS  Google Scholar 

  22. Decher G, Schlenoff J (Eds) (2003) Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley–VCH, Weinheim

  23. Castelnovo M, Joanny JF (2000) Langmuir 16:7524

    Article  CAS  Google Scholar 

  24. Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Intern Ed 44:3358

    Article  CAS  Google Scholar 

  25. Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479

    Article  CAS  Google Scholar 

  26. Aulin C, Johansson E, Wagberg L, Lindstrom T (2010) Biomacromol 11:872

    Article  CAS  Google Scholar 

  27. de Mesquita JP, Donnici CL, Pereira FV (2010) Biomacromol 11:473

    Article  Google Scholar 

  28. Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926

    Article  CAS  Google Scholar 

  29. Jean B, Dubreuil F, Heux L, Cousin F (2008) Langmuir 24:3452

    Article  CAS  Google Scholar 

  30. Zhao Q, Qian JW, An QF, Sun ZW (2010) J Membrane Sci 346:335

    Article  CAS  Google Scholar 

  31. Bonné MJ, Milsom EV, Helton M, Thielemans W, Wilkins S, Marken F (2007) Electrochem Commun 9:1985

    Article  Google Scholar 

  32. Medeiros ES, Mattoso LHC, Bernardes-Filho R, Wood DF, Orts WJ (2008) Coll Polym Sci 286:1265

    Article  CAS  Google Scholar 

  33. de Rodriguez NLG, Thielemans W, Dufresne A (2006) Cellulose 13:261

    Article  Google Scholar 

  34. DeLongchamp DM, Hammond PT (2004) Chem Mater 16:4799

    Article  CAS  Google Scholar 

  35. John A, Mahadeva SK, Kim J (2010) Smart Mater Struct 19:045011

    Article  Google Scholar 

  36. Tsai TH, Wu YF (2006) J Electrochem Soc 153:C86

    Article  CAS  Google Scholar 

  37. Kuila BK, Stamm M (2010) J Mater Chem 20:6086

    Article  CAS  Google Scholar 

  38. Huang WS, Macdiarmid AG (1993) Polym 34:1833

    Article  CAS  Google Scholar 

  39. Farag AAM, Ashery A, Rafea MA (2010) Synth Metals 160:156

    Article  CAS  Google Scholar 

  40. Bonné MJ, Galbraith E, James TD, Wasbrough MJ, Edler KJ, Jenkins ATA, Helton M, McKee A, Thielemans W, Psillakis E, Marken F (2010) J Mater Chem 20:588

    Article  Google Scholar 

  41. Milsom EV, Novak J, Green SJ, Zhang XH, Stott SJ, Mortimer RJ, Edler K, Marken F (2007) J Solid State Electrochem 11:1109

    Article  CAS  Google Scholar 

  42. Atkins PW (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford, 781

    Google Scholar 

  43. Kalaji M, Nyholm L, Peter LM (1992) J Electroanal Chem 325:269

    Article  CAS  Google Scholar 

  44. Aoki K, Kawase M (1994) J Electroanal Chem 377:125

    Article  CAS  Google Scholar 

  45. Malinauskas A (1999) Synth Metals 107:75

    Article  CAS  Google Scholar 

  46. Buttner E, Holze R (2001) J Electroanal Chem 508:150

    Article  CAS  Google Scholar 

  47. Duic L, Grigic S (2001) Electrochim Acta 46:2795

    Article  CAS  Google Scholar 

  48. Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York, p221

    Google Scholar 

  49. Group SE (2001) Instrumental methods in electrochemistry. Horwood Publishing, Chichester, 183

    Google Scholar 

Download references

Acknowledgements

Sara Shariki would like to thank Gharib Shariki and Maryam Shirmardi for financial support for this work. S.Y.L. thanks the University of Nottingham for a “Dean of Engineering International Research Scholarship” and the University of Nottingham Graduate School for a “Building Experience and Skills Travel Scholarship”. Dr. Suguo Huo and Dr. Paul Warburton are gratefully acknowledged for allowing access to the EPSRC FIB service at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Marken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shariki, S., Liew, S.Y., Thielemans, W. et al. Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films. J Solid State Electrochem 15, 2675–2681 (2011). https://doi.org/10.1007/s10008-010-1261-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1261-z

Keywords

Navigation