Skip to main content
Log in

Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Development of Li2S–P2S5-based glass-ceramic electrolytes is reviewed. Superionic crystals of Li7P3S11 and Li3.25P0.95S4 were precipitated from the Li2S–P2S5 glasses at the selected compositions. These high temperature or metastable phases enhanced conductivity of glass ceramics up to over 10−3 S cm−1 at room temperature. The original (or mother) glass electrolytes itself showed somewhat lower conductivity of 10−4 S cm−1 and have important role as a precursor for obtaining the superionic crystals, which were not synthesized by a conventional solid-state reaction. The substitution of P2O5 for P2S5 at the composition 70Li2S·30P2S5 (mol%) improved both conductivity and electrochemical stability of glass-ceramic electrolytes. The all-solid-state In/LiCoO2 cell using the 70Li2S·27P2S5·3P2O5 (mol%) glass-ceramic electrolyte showed initial capacity of 105 mAh g−1 (gram of LiCoO2) at the current density of 0.13 mA cm−2 and exhibited higher electrochemical performance than that using the 70Li2S·30P2S5 glass-ceramic electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Minami T, Tatsumisago M, Wakihara M, Iwakura C, Kohjiya S, Tanaka I (2005) Solid state ionics for batteries. Springer-Verlag, Tokyo

    Book  Google Scholar 

  2. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Solid State Ion 135:33

    Article  CAS  Google Scholar 

  3. Iwamoto K, Aotani N, Takada K, Kondo S (1995) Solid State Ion 79:288

    Article  CAS  Google Scholar 

  4. Komiya R, Hayashi A, Morimoto H, Tatsumisago M, Minami T (2001) Solid State Ion 140:83

    Article  CAS  Google Scholar 

  5. Mercier R, Malugani JP, Fahys B, Robert G (1981) Solid State Ion 5:663

    Article  CAS  Google Scholar 

  6. Pradel A, Ribes M (1986) Solid State Ion 18–19:351

    Article  Google Scholar 

  7. Tatsumisago M, Hirai K, Minami T, Takada K, Kondo S (1993) J Ceram Soc Jpn 101:1315

    CAS  Google Scholar 

  8. Kanno R, Murayama M (2001) J Electrochem Soc 148:742

    Article  Google Scholar 

  9. Murayama M, Sonoyama N, Yamada A, Kanno R (2004) Solid State Ion 170:173

    Article  CAS  Google Scholar 

  10. Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111

    Article  CAS  Google Scholar 

  11. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Adv Mater 17:918

    Article  CAS  Google Scholar 

  12. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) Solid State Ion 177:2721

    Article  CAS  Google Scholar 

  13. Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T (2001) J Am Ceram Soc 84:477

    Article  CAS  Google Scholar 

  14. Minami K, Mizuno F, Hayashi A, Tatsumisago M (2007) Solid State Ion 178:837

    Article  CAS  Google Scholar 

  15. Takada K, Aotani N, Iwamoto K, Kondo S (1996) Solid State Ion 136–137:877

    Article  Google Scholar 

  16. Tachez M, Malugani P, Mercier R, Robert G (1984) Solid State Ion 14:181

    Article  CAS  Google Scholar 

  17. Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Solid State Ion 178:1163

    Article  CAS  Google Scholar 

  18. Minami K, Hayashi A, Tatsumisago M (2010) J Ceram Soc Jpn 118:305

    Article  CAS  Google Scholar 

  19. Machida N, Yamamoto H, Shigematsu T (2004) Chem Lett 33:30

    Article  CAS  Google Scholar 

  20. Minami K, Mizuno F, Hayashi A, Tatsumisago M (2008) J Non-Cryst Solids 354:370

    Article  CAS  Google Scholar 

  21. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Adv Mater 18:2226

    Article  CAS  Google Scholar 

  22. Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2009) J Electrochem Soc 156:A27

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and also supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, A., Minami, K. & Tatsumisago, M. Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries. J Solid State Electrochem 14, 1761–1767 (2010). https://doi.org/10.1007/s10008-010-1098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1098-5

Keywords

Navigation