Skip to main content
Log in

Pt–Ru-supported electrodes deposited by multiple successive cycles of potentiostatic pulses: evaluation of Nafion film effect on methanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of thin Nafion films on electrodeposited Pt–Ru electrocatalysts for the electro-oxidation of methanol was studied. Nanostructured planar carbon-supported Pt–Ru electrodes, on which a layer of Nafion ionomer was incorporated, were prepared by multiple cycles of potentiostatic pulses. SEM and AFM images of the deposit showed Pt–Ru particles grouped in agglomerates with sizes between 50 and 200 nm constituted by small nano-sized crystallites. The activity of the electrodes was found to decrease when the thickness of the Nafion film was increased, but the Tafel slope value was found to remain almost unchanged in all electrodes. These results may be associated with the partial blocking of the surface active sites by hydrophobic domains of the polymer, and the presence of CO2 molecules retained within the Nafion hydrophilic microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hogarth MP, Ralph TR (2002) Platinum Metals Rev 46:146

    CAS  Google Scholar 

  2. Spinace EV, Neto AO, Linardi M (2004) J Power Sources 129:121

    Article  CAS  Google Scholar 

  3. Petrii O (2008) J Solid State Electrochem 12:609

    Article  CAS  Google Scholar 

  4. Arico AS, Srinivasan S, Antonucci V (2001) Fuel Cells 2:133

    Article  Google Scholar 

  5. Iwasita T (2003) In: Vielstich W et al (eds) Handbook of fuel cells fundamentals, technology and applications, vol. 2. Wiley, New York, p 603

    Google Scholar 

  6. Lamy C, Léger J-M, Srinivasan S (2001) In: Bockris JO`M, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol. 34. Kluwer Academic/Plenum, New York, p 53

    Google Scholar 

  7. Sone Y, Ekdunge P, Simonsson D (1996) J Electrochem Soc 143:1254

    Article  CAS  Google Scholar 

  8. García MF, Sieben JM, Pilla AS, Duarte MME, Mayer CE (2008) Int J Hydrogen Energy 33:3517

    Article  CAS  Google Scholar 

  9. Sieben JM, Duarte MME, Mayer CE (2008) J Appl Electrochem 38:483

    Article  CAS  Google Scholar 

  10. Vuković M, Čukman D (1999) J Electroanal Chem 474:167

    Article  Google Scholar 

  11. Hadži-Jordanov S, Argerstein H, Vuković M, Conway BE (1977) J Phys Chem 81:2271

    Article  Google Scholar 

  12. Hepel T, Pollak FH, O'Grady WE (1984) J Electrochem Soc 131:2094.

    Article  CAS  Google Scholar 

  13. Hogarth MP, Punk J, Shukla AK, Hamnett A (1994) J Appl Electrochem 24:85

    Article  CAS  Google Scholar 

  14. Bockris JO'M, Khan SUM (1993) Surface electrochemistry. A molecular level approach. Plenum Press, New York, p 361

    Google Scholar 

  15. Bard AJ, Faulkner CR (1980) Electrochemical Methods, Fundamentals and Applications, 2nd edn. Wiley, Singapore

    Google Scholar 

  16. Plyasova LM, Molina IY, Gavrilov AN, Cherepanova SV, Cherstiouk OV, Rudina NA, Savinova ER, Tsirlina GA (2006) Electrochim Acta 51:4477

    Article  CAS  Google Scholar 

  17. Paoletti C, Cemmi A, Giorgi L, Giorgi R, Pilloni L, Serra E, Pascuali M (2008) J Power Sources 183:84

    Article  CAS  Google Scholar 

  18. Gloaguen F, Léger JM, Lamy C, Marmann A, Stimming U, Vogel R (1999) Electrochim Acta 44:1805

    Article  CAS  Google Scholar 

  19. Zoval JV, Lee J, Gorer S, Penner RM (1998) J Phys Chem B 102:1166

    Article  CAS  Google Scholar 

  20. Cherstiouk OV, Pron’kin SN, Chuvilin AL, Salanov AN, Savinova ER, Tsirlina GA, Petrii OA (2000) Russ J Electrochem 36:741

    Article  Google Scholar 

  21. Coutanceau C, Rakotondrainibe AF, Lima A, Garnier E, Pronier S, Léger J-M, Lamy C (2004) J Appl Electrochem 34:61

    Article  CAS  Google Scholar 

  22. Gavrilov AN, Savinova ER, Simonov PA, Zaikovskii PI, Cherepanova SV, Tsirlina GA, Parmon VN (2007) Phys Chem Chem Phys 9:5476

    Article  CAS  Google Scholar 

  23. Jiang J, Kucernak A (2004) J Electroanal Chem 567:123

    Article  CAS  Google Scholar 

  24. Croissant MJ, Napporn T, Léger J-M, Lamy JM (1998) Electrochim Acta 43:2447

    Article  CAS  Google Scholar 

  25. Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Fernández-Fragua A (2006) Chem Eng Sci 61:4773

    Article  CAS  Google Scholar 

  26. Ma S, Odgaard M, Skou E (2005) Solid State Ionics 176:2923

    Article  CAS  Google Scholar 

  27. Gasteiger HA, Marković N, Ross PN Jr, Cairns E (1993) J Phys Chem 97:12020

    Article  CAS  Google Scholar 

  28. Parsons R, VanderNoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  29. Rodríguez-Nieto FJ, Morante-Catacora TY, Cabrera CR (2004) J Electroanal Chem 571:15

    Article  CAS  Google Scholar 

  30. Takasu Y, Fujiwara T, Murakami Y, Sasaki K, Oguri M, Asaki T, Sugimoto W (2000) J Electrochem Soc 147:4421

    Article  CAS  Google Scholar 

  31. de la Gómez Fuente JL, Martínez-Huerta MV, Rojas S, Terreros P, Fierro JLG, Peña MA (2005) Carbon 43:3002

    Article  CAS  Google Scholar 

  32. Tusseeva EK, Mikhaylova AA, Khazova OA, Kourtakis K-D (2004) Russian J Electrochem 40:1146

    Article  CAS  Google Scholar 

  33. Liu Z, Ling XY, Lee JY, Su X, Gan LM (2003) J Mater Chem 13:3049

    Article  CAS  Google Scholar 

  34. de la Gómez Fuente JL, Martínez-Huerta MV, Rojas S, Terreros P, Fierro JLG, Peña MA (2006) Catal Today 116:422

    Article  CAS  Google Scholar 

  35. Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IY, Tsirlina GA, Savinova ER (2008) J Solid State Electrochem 12:497

    Article  CAS  Google Scholar 

  36. Aricó AS, Creti P, Kim H, Mantenga R, Giordano N, Antonucci V (1996) J Electrochem Soc 143:3047

    Article  Google Scholar 

  37. Gojković SL, Vidaković TR, Durović DR (2003) Electrochim Acta 48:3607

    Article  CAS  Google Scholar 

  38. Vidaković T, Christov M, Sundmacher K (2005) J Electroanal Chem 580:105

    Article  CAS  Google Scholar 

  39. Vidaković T, Christov M, Sundmacher K (2004) Electrochim Acta 49:2179

    Article  CAS  Google Scholar 

  40. Zecevic SK, Wainright JS, Litt MH, Gojkovic SLj, Savinell RF (1997) J Electrochem Soc 144:2973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ANPCYT grant No. 10-11133, UNS grant 24/M097 and CIC. J.M.S. is grateful to the CONICET for a postdoctoral fellowship, also J.M.S. would like to thank Dr. D. Salinas for the AFM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Sieben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieben, J.M., Duarte, M.M.E. & Mayer, C.E. Pt–Ru-supported electrodes deposited by multiple successive cycles of potentiostatic pulses: evaluation of Nafion film effect on methanol oxidation. J Solid State Electrochem 14, 1555–1563 (2010). https://doi.org/10.1007/s10008-009-0972-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0972-5

Keywords

Navigation