Skip to main content
Log in

The influence of the conditions of the anodic formation and the thickness of Ag(I) oxide nanofilm on its semiconductor properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic formation of Ag(I) oxide nanofilms on polycrystalline silver and Ag–Au alloys as well as on low-index single crystals of silver in 0.1 М KOH was examined. By the methods of photocurrent i ph and photopotential E ph measurements, the n-type conductivity of Ag2O film was established. Since the film (6–120 nm) is thinner than the space charge region, the dependence of photocurrent and photopotential appears on the film thickness L: i ph ~L and E ph ~L 2. The transition from polycrystalline silver to single crystals as well as the addition of a small amount of gold (X Au ≤ 4 at.%) into the silver lattice decreases the degree of deviation from the stoichiometric composition Ag2O. The parameters of Ag2O film (optical absorption coefficient α, donor defects concentration N D, space charge region W, and Debye’s length of screening L D) depend on the index of a crystal face of silver, volume concentration of gold X Au in the alloy, and film-formation potential E. At Е = 0.52 V, the sequences of variation of these parameters correlate with the reticular density sequence. The growth of the potential disturbs these sequences. The band gap in Ag2O formed on Agpoly, Aghkl, and Ag–Au is 2.32, 2.23, and 2.19 eV. Flat band potential in Ag(I) oxide, formed on Agpoly in 0.5 M KOH is 0.37 V. The appearance of the clear dependence between the state of the oxide/metal interface and the structure-sensitive parameters of semiconductor Ag(I) oxide phase allows considering the anodic formation of Ag2O on Ag as a result of the primary direct electrochemical reaction, not of the precipitation from the near-electrode layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The evidence of enrichment of the surface of Ag–Au alloy with gold during the dealloying are presented, for example, in [22, 23].

  2. The numerical analysis shows that in thin films with a low level of light absorption (αL D < < 1), PP and PC values are negligibly small.

  3. In a special set of experiments, the dependence of the capacity of Agpoly/0.5 M KOH boundary on the potential was obtained. The extrapolation in the coordinates of Mott–Schottky gives the value of flat band potential for Ag2O E fb = 0.37 V in accordance with [42], where E fb = 0.33 V

  4. The problem of i ph decay in Ag(I) oxide on Aghkl after the film thickness achieves 50 nm needs further investigation in detail.

  5. Note that the accuracy of determination of band gap in Ag2O oxide ± 0.1 eV is low enough to draw conclusions on the influence of the crystal face and alloy composition on E bg.

References

  1. Hampson NA, Lee JB, Morley JR (1971) Electrochim Acta 16:637

    Article  CAS  Google Scholar 

  2. Clarke TG, Hampson NA, Lee JB, Morley JR, Scanlon B (1969) Ber Buns Phys Chem 73:279

    CAS  Google Scholar 

  3. Becerra JG, Salvarezza RC, Arvia AJ (1990) Electrochim Acta 35:595

    Article  CAS  Google Scholar 

  4. Alonso C, Salvarezza RC, Vara JM, Arvia AJ (1990) Electrochim Acta 35:489

    Article  CAS  Google Scholar 

  5. Ambrose J, Barradas RG (1974) ElectrochimActa 19:781

    Article  CAS  Google Scholar 

  6. Teijelo ML, Vilche JR, Arvia AJ (1984) J Electroanal Chem 162:207

    Article  Google Scholar 

  7. Tilak BV, Perkins RS, Kozlovska HA, Conway BE (1972) Electrochim Acta 17:1447

    Article  CAS  Google Scholar 

  8. Vidovich GL, Leikis DI, Kabanov BN (1962) Doklady Akademii Nauk SSSR 142:109

    CAS  Google Scholar 

  9. Droog JMM (1980) J Electroanal Chem 115:225

    Article  CAS  Google Scholar 

  10. Doubova LM, Daolio S, Pagura C, De Battisti A, Trasatti S (2002) Russian J Electrochem 38:20

    Article  CAS  Google Scholar 

  11. Savinova ER (2006) Razmernye i strukturnye effekty v elektrokatalize. Dissertation, Novosibirsk, Russia

    Google Scholar 

  12. Savinova E, Zemlyanov D, Pettinger B, Scheybal A, Schlogl R, Doblhofer K (2000) Electrochim Acta 46:175

    Article  CAS  Google Scholar 

  13. Nechaev IV, Vvedenskii AV (2008) Sorbtsionnye I khromatograficheskiye protsessy 8:753

    Google Scholar 

  14. Nechaev IV, Vvedenskii AV (2009) Prot Met Phys Chem Surf 45:137

    CAS  Google Scholar 

  15. Marshakov IK, Vvedenskii AV, Kondrashin VY, Bokov GA (1988) Anodnoye Rastvoreniye i Selektivnaya Korroziya Splavov. VSU, Voronezh

    Google Scholar 

  16. Pickering HW (1968) J Electrochem Soc 115:143

    Article  CAS  Google Scholar 

  17. Kaiser H. (1987) Chem Industries, Corrosion Mechanism. New York, Basel, 28: 85

  18. Kaesche H (1979) Die Korrosion der Metalle. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  19. Kuznetsova ТА, Flegel’ EV, Vvedenskii AV (2002) Prot Met 38:333

    Article  CAS  Google Scholar 

  20. Kudryashov DA (2008) Anodnoye formirovaniye i svoistva nanoplyonki oksida Ag(I) na poli-, monokristallakh serebra i Ag, Au-splavakh. Dissertation, Voronezh, Russia

    Google Scholar 

  21. Vvedenskii А, Grushevskaya S, Kudryashov D, Kuznetsova T (2007) Corros Sci 49:4523

    Article  CAS  Google Scholar 

  22. Forty AI, Rowlands G (1981) Phyl Mag 43A:171

    Article  Google Scholar 

  23. Poate IM (1980) Gold Bull 14:2

    Google Scholar 

  24. Roldugin VI (2008) Fizikokhimiya poverkhnosti. Intellect, Moscow

    Google Scholar 

  25. Kapusta S, Hackerman N (1980) Electrochim Acta 25:1001

    Article  CAS  Google Scholar 

  26. McAleer JF, Peter LM (1980) Farad Discuss Chem Soc 70:67

    Article  Google Scholar 

  27. Collisi U, Strehblow HH (1990) J Electroanal Chem 284:85

    Article  Google Scholar 

  28. Bard AJ, Stratmann M, Licht S (eds) (2002) Encyclopedia of electrochemistry. V.6: Semiconductor electrodes and photoelectrochemistry. Wiley-VCH, Weinheim

  29. Zoski CG (ed) (2007) Handbook of electrochemistry. Elsevier, New Mexico State University

    Google Scholar 

  30. Pleskov YV, Gurevich YY (1986) Semiconductor photoelectrochemistry. Consultant Bureau, New York

    Google Scholar 

  31. Oshe EK, Rozenfel'd IL (1978) Itogi nauki I tekhniki. VINITI. Korroziya i zaschita ot korrozii: 111

  32. Finklea HO (ed) (1988) Semiconductor electrodes. Elsevier, New York

    Google Scholar 

  33. Kudryashov DA, Grushevskaya SN, Vvedenskii AV (2007) Kondensirovannye sredy I mezhfaznye granitsy 9:53

    Google Scholar 

  34. Kudryashov DA, Grushevskaya SN, Vvedenskii АV (2007) Prot Met Phys Chem Surf 43:591

    CAS  Google Scholar 

  35. Vvedenskii A, Grushevskaya S, Kudryashov D, Ganzha S (2008) Surf Interface Anal 40:636

    Article  CAS  Google Scholar 

  36. Luck’yanchilov AN, Grushevskaya SN, Kudryashov DA, Vvedenskii AV (2006) The environment for the photopotential measurement, Patent no. 55988 RF. Bulletin "Invitations. Useful models" 24: 3

    Google Scholar 

  37. Vvedenskii AV, Grushevskaya SN, Kudryashov DA, Luck’yanchilov AN (2007) The environment for the photocurrent measurement, Patent no. 66052 RF. Bulletin "Invitations. Useful models" 24: 3

    Google Scholar 

  38. Scheblykina GE, Bobrinskaya EV, Vvedenskii AV (1998) Prot Met 34:6

    Google Scholar 

  39. Kozaderov OA, Vvedenskii AV (2005) Prot Met 41:211

    Article  CAS  Google Scholar 

  40. Wilson RH (1977) J Appl Phys 48:4292

    Article  CAS  Google Scholar 

  41. Sutter EMM, Millet B, Fiaud C, Lincolt D (1995) J Electroanal Chem 386:101

    Article  Google Scholar 

  42. Jiang ZY, Huang SY, Qian B (1994) Electrochim Acta 16:2465

    Article  Google Scholar 

  43. Chatterjee K, Banerjee S, Chakravorty D (2002) Phys Rev B 66:854211

    Google Scholar 

  44. Kudryashov DA, Grushevskaya SN, Vvedenskii AV (2008) Prot Met Phys Chem Surf 44:301

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Leonid Kazanskiy (The Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science) for the assistance in the XPS investigations.

This work is supported by Russian Foundation of Basic Research (project 09-03-00554-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vvedenskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vvedenskii, A., Grushevskaya, S., Kudryashov, D. et al. The influence of the conditions of the anodic formation and the thickness of Ag(I) oxide nanofilm on its semiconductor properties. J Solid State Electrochem 14, 1401–1413 (2010). https://doi.org/10.1007/s10008-009-0952-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0952-9

Keywords

Navigation