Skip to main content
Log in

Copper corrosion in soil: influence of chloride contents, aeration and humidity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion of copper in a typical Portuguese soil was studied. The original soil was characterised, and modifications were produced by adding chloride, and HClO4 solutions, or by increasing its relative humidity. The aggressiveness degree of the various soil samples was determined. Copper coupons exposed for 3 months in the original and in the modified soil samples were analysed. The average corrosion rates determined from gravimetric data were in good correlation with the soil aggressiveness. The morphology of the corroded copper surfaces, with and without corrosion products, was analysed by visual observation, optical microscopy and scanning electron microscopy. Energy dispersive spectroscopy was used for the semi-quantitative analysis of the corrosion products and X-ray diffraction spectroscopy to identify the crystalline products. Cuprite has been identified on the copper samples corresponding to the interfaces Cu|S6 and Cu|S8, plus paratacamite on the copper coupon exposed to the soil with higher concentration of chloride (S6). Polarisation curves of copper samples in neutral solutions made by adding different amounts of chloride ions to the soil washing water, under deaereated conditions, were recorded and analysed. The passivity breakdown potential has shown, as expected, a displacement to the cathodic direction as the Cl ion concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tronner K, Nord AG, Borg GCh (1995) Water Air Soil Pollut 85:2725. doi:10.1007/BF01186246

    Article  CAS  Google Scholar 

  2. Tylecote RF (1979) J Archaeol Sci 6:345. doi:10.1016/0305-4403(79)90018-9

    Article  CAS  Google Scholar 

  3. Nord AG, Mattsson E, Kronner T (2005) Prot Met 41:309. doi:10.1007/s11124-005-0045-9

    Article  CAS  Google Scholar 

  4. Gerwin W, Baumhauer R (2000) Geoderma 96:63. doi:10.1016/S0016-7061(00)00004-5

    Article  CAS  Google Scholar 

  5. Jones DA (1992) Principles and prevention of corrosion, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  6. Lopez E, Osella A, Martins L (2006) Corros Sci 48:389. doi:10.1016/j.corsci.2005.02.006

    Article  CAS  Google Scholar 

  7. Srivastava A, Balasubramaniam R (2005) Mater Charact 55:127. doi:10.1016/j.matchar.2005.04.004

    Article  CAS  Google Scholar 

  8. Kvashnina KO, Butorin SM, Modin A, Soroka I, Marcellini M, Nordgren J, Guo J-H, Werene L (2007) Chem Phys Lett 447:54. doi:10.1016/j.cplett.2007.09.001

    Article  CAS  Google Scholar 

  9. Ferreira JP, Rodrigues JA, Fonseca ITE (2004) J Solid State Electrochem 8:260. doi:10.1007/s10008-003-0445-1

    Article  CAS  Google Scholar 

  10. Kear G, Barker BD, Walsh FC (2004) Corros Sci 46:109. doi:10.1016/S0010-938X(02)00257-3

    Article  CAS  Google Scholar 

  11. Robbiola L, Blengino J-M, Fiaud C (1998) Corros Sci 40:2083. doi:10.1016/S0010-938X(98)00096-1

    Article  CAS  Google Scholar 

  12. Robbiola L, Portier R (2006) J Cult Herit 7:1. doi:10.1016/j.culher.2005.11.001

    Article  Google Scholar 

  13. Gettens RJ (1963) Recent advances in conservation. Butterworths, London

    Google Scholar 

  14. Ribotta SB, Folquer ME, Vilche JR (1995) Corrosion 51:682

    Article  CAS  Google Scholar 

  15. Trabanelli G, Zucchi F, Arpaia M (1972) Chim Pura Ed Applicata 3:43

    CAS  Google Scholar 

  16. Kowalenko CG (1993). In: Carter MR (ed) Soil sampling and methods of analysis, Lewis Publisher Canadian Soc of Soil Science, Ottawa

  17. Bradford S (2002) Practical handbook of corrosion control in soils. CASTI, Edmonton, Canada

    Google Scholar 

  18. Underground Corrosion ASTM StP74, Philadelphia, 1990.

  19. ASTM G51-95 (2005) Standard test method for measuring pH of soil. ASTM, Philadelphia, USA

    Google Scholar 

  20. G1-90 (1992) Practice for preparing, cleaning and evaluating corrosion test specimens, Annual Book of Standards, 03.02, ASTM, Philadelphia, USA

  21. LaQue FL (1975) Marine corrosion—causes and prevention. Wiley, NY

    Google Scholar 

  22. Constantinides I, Adriaens A, Adams F (2002) Appl Surf Sci 189:90. doi:10.1016/S0169-4332(02)00005-3

    Article  CAS  Google Scholar 

  23. Sharkey JB, Lewin SZ (1971) Am Mineral 56:179

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the ‘Instituto de Soldadura e Qualidade’ (ISQ) for the SEM facilities and to Mr. Rui Rodrigues for all the assistance. Fundação para a Ciência e Tecnologia (FCT) is also acknowledged for the financial support to ‘Centro de Ciências Moleculares e Materiais’ (CCMM) and to ‘Unidade de Química Ambiental [528]’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. E. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonso, F.S., Neto, M.M.M., Mendonça, M.H. et al. Copper corrosion in soil: influence of chloride contents, aeration and humidity. J Solid State Electrochem 13, 1757–1765 (2009). https://doi.org/10.1007/s10008-009-0868-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0868-4

Keywords

Navigation