Skip to main content
Log in

On the pseudocapacitive behavior of nanostructured molybdenum oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured molybdenum oxide was potentiodynamically deposited onto a stainless steel surface from an aqueous bath by cycling the potential between 0 and −0.75 V vs. Ag/AgCl. The deposit consisted of particulates in the range of 30 to 80 nm. Electrochemical studies under galvanostatic charge/discharge and also impedance spectroscopy revealed capacitive behavior in the potential range of −0.3 to −0.55 V vs. Ag/AgCl with the value of 477 F g−1 at 0.1 mA/cm2. An equivalent circuit comprising of three parallel branches consisting of double-layer capacitance, Warburg impedance, and a constant phase element signifying pseudo-capacitance each coupled with their corresponding resistances was fitted to the experimental findings, and the magnitudes of the elements were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conway BE, Supercapacitors E (1999) Scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  2. Jow TR, Zheng J (1998) J Electrochem Soc 142:49

    Article  Google Scholar 

  3. Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Electrochim Acta 52:2806

    Article  CAS  Google Scholar 

  4. Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Electrochim Acta 53:4607

    Article  CAS  Google Scholar 

  5. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207

    Article  CAS  Google Scholar 

  6. Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097

    Article  CAS  Google Scholar 

  7. Liu TC, Pell WG, Conway BE (1999) Electrochim Acta 44:2829

    Article  CAS  Google Scholar 

  8. Nam KW, Kim KB (2002) J Electrochem Soc 149:A346

    Article  CAS  Google Scholar 

  9. Xu MW, Bao SJ, Li HL (2007) J Solid State Electrochem 11:372

    Article  CAS  Google Scholar 

  10. Sugimoto W, Ohnuma T, Murakami Y, Takasu Y (2001) Electrochem Solid State Lett 4:A145

    Article  CAS  Google Scholar 

  11. Murugan AV, Viswanath AK (2006) J App Phys 100:074319

    Article  Google Scholar 

  12. Bailar JC, Emeléus HJ, Nyholm SR, Trotman-Dickenson AF (eds) (1973) Comprehensive inorganic chemistry vol 3. Pergamon Press Ltd, Oxford

    Google Scholar 

  13. Ferroni M, Guidi V, Martinelli G, Sacerdoti M, Nelli P, Sberveglieri G (1998) Sensor Actuator B 48:285

    Article  Google Scholar 

  14. Imawan C, Steffes H, Solzbacher F, Obermeier E (2001) Sensor Actuator B 78:119

    Article  Google Scholar 

  15. Pichat P, Mozzanega M, Hoang-Van C (1988) J Phys Chem 92:467

    Article  CAS  Google Scholar 

  16. He T, Ma Y, Cao Y, Jiang P, Zhang X, Yang W, Yao J (2001) Langmuir 17:8024

    Article  CAS  Google Scholar 

  17. Shembel E, Apostolova R, Nagirny V, Kirsanova I, Ph G, Lytvyn P (2005) J Solid State Electrochem 9:96

    Article  CAS  Google Scholar 

  18. Yebka B, Julien C, Nazri GA (1999) Ionics 5:236

    Article  CAS  Google Scholar 

  19. Christian PA, Carides JN, DiSalvo FJ, Waszczak V (1980) J Electrochem Soc 127:2315

    Article  CAS  Google Scholar 

  20. Ivanova T, Gesheva KA, Szekeres A (2002) J Solid State Electrochem 7:21

    Article  CAS  Google Scholar 

  21. Jiebing S, Rui X, Shimin W, Wufeng T, Hua T, Jing S (2003) J Sol–gel Sci Technol 27:315

    Article  Google Scholar 

  22. Komaba S, Kumagai N, Kumagai R, Kumagai N, Yashiro H (2002) Solid State Ionics 152–153:319

    Article  Google Scholar 

  23. Tran MH, Ohkita H, Mizushima T, Kakuta N (2005) Appl Catal, A Gen 287:129

    Article  CAS  Google Scholar 

  24. Li S, Shao C, Liu Y, Tang S, Mu R (2006) J Phys Chem Solids 67:1869

    Article  CAS  Google Scholar 

  25. McEvoy TM, Stevenson KJ (2003) Langmuir 19:4316

    Article  CAS  Google Scholar 

  26. Pathan HM, Min SK, Jung KD, Joo OS (2006) Electrochem Commun 8:273

    Article  CAS  Google Scholar 

  27. Guerfi A, Dao LH (1989) J Electrochem Soc 136:2435

    Article  CAS  Google Scholar 

  28. Nagirnyi VM, Apostolova RD, Baskevich AS, Shembel EM (2004) Russ J Appl Chem 77:71

    Article  CAS  Google Scholar 

  29. Więcek B, Twardoch U (2004) J Phys Chem Solids 65:263

    Article  Google Scholar 

  30. Nagirnyi VM, Apostolova RD, Shembel EM (2006) Russ J Appl Chem 79:1438

    Article  CAS  Google Scholar 

  31. Patil RS, Uplane MD, Patil PS (2006) Appl Surf Sci 252:8050

    Article  CAS  Google Scholar 

  32. Tytko KH, Gras D (1989) Molybdenum. In: Katscher H, Schroder F (eds) Gmelin handbook of inorganic chemistry, supplement vol B3b. Springer-Verlag, New York

    Google Scholar 

  33. Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate (V), molybdate (VI), and tungstate (VI). In: Sykes AG (ed) Advances in inorganic chemistry, vol 49. Academic Press, New York, pp 127–182

    Google Scholar 

  34. McEvoy TM, Stevenson KJ (2003) http://hdl.handle.net/2152/768

  35. McEvoy TM, Stevenson KJ (2004) J Mater Res 19:429

    Article  CAS  Google Scholar 

  36. Shembel E, Apostolova R, Nagriny V, Kirsanova I, Ph G, Lytvyn P (2005) J Solid State Electrochem 9:96

    Article  CAS  Google Scholar 

  37. DeSmet DJ, Ord JL (1987) J Electrochem Soc 134:1734

    Article  Google Scholar 

  38. Dong S, Wang B (1994) J Electroanal Chem 370:141

    Article  CAS  Google Scholar 

  39. Liu S, Zhang Q, Wang E, Dong S (1999) Electrochem Commun 1:365

    Article  CAS  Google Scholar 

  40. McEvoy TM, Stevenson KJ (2003) Anal Chim Acta 496:39

    Article  CAS  Google Scholar 

  41. McEvoy TM, Stevenson KJ, Hupp JT, Dang X (2003) Langmuir 19:4316

    Article  CAS  Google Scholar 

  42. Joe TR, Zheng JP (1998) J Electrochem Soc 145:49

    Article  Google Scholar 

  43. Gupta V, Gupta S, Miura N (2008) J Power Sources 175:680

    Article  CAS  Google Scholar 

  44. Luo JM, Gao B, Zhang XG (2008) Mater Res Bull 43:1119

    Article  CAS  Google Scholar 

  45. Su LH, Zhang XG, Liu Y (2008) J Solid State Electrochem 12:1129

    Article  CAS  Google Scholar 

  46. Lin C, Ritter JA, Popov BN, White RE (1999) J Electrochem Soc 146:3168

    Article  CAS  Google Scholar 

  47. Farsi H, Gobal F (2007) J Solid State Electrochem 11:1085

    Article  CAS  Google Scholar 

  48. Farsi H, Gobal F (2009) J Solid State Electrochem 13:433

    Article  CAS  Google Scholar 

  49. Pico F, Ibañez J, Centeno TA, Pecharroman C, Rojas RM, Amarilla JM, Rojo JM (2006) Electrochim Acta 51:4693

    Article  CAS  Google Scholar 

  50. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) J Phys Chem B 109:7330

    Article  CAS  Google Scholar 

  51. Pajkossy T (1994) J Electroanal Chem 364:111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Farsi.

Additional information

This paper has been presented in: The Second international conference on nanoscience and nanotechnology, Tabriz, Iran, October 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farsi, H., Gobal, F., Raissi, H. et al. On the pseudocapacitive behavior of nanostructured molybdenum oxide. J Solid State Electrochem 14, 643–650 (2010). https://doi.org/10.1007/s10008-009-0830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0830-5

Keywords

Navigation