Skip to main content
Log in

Self-organization in nonlinear dynamical systems and its relation to the materials science

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This review paper presents briefly the main concepts of nonlinear dynamics and their exemplary manifestations in selected systems, including those important from the point of view of materials science. It is an extended version of the conference presentation. The conditions of instabilities leading to spontaneous formation of dissipative structures are given. Principles of nonlinear dynamics are illustrated with several examples from the homogeneous and heterogeneous and physical and chemical systems: pattern formation in the convective motion of fluids subject to various kinds of driving forces, periodic precipitation phenomena, oscillations, and pattern formation in the Belousov–Zhabotinski (BZ) reaction and the catalytic oxidation of thiocyanate ions with hydrogen peroxide, as well as bistability and tristability in the electrochemical reduction of azide complexes of nickel(II). The application of nonlinear dynamics in materials science is first exemplified by its role in polymerization reactions. Such processes can either exhibit internal couplings leading to oscillations or can be coupled with the chemical oscillatory process through, e.g., the covalent bonding of its catalyst to the polymer network. Other selected examples of the application of nonlinear dynamics in materials science, referring to electrochemical processes, were briefly reviewed. Nonlinear dynamics appears to be useful for designing new materials, including those at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. An exception from this condition is thermal diffusion, which characteristics are practically linear under a typical condition, although it can cause dissipative separation of a mixture of gases of different molecular masses, in the temperature field.

References

  1. Scott SK (1994) Oscillations, waves and chaos in chemical kinetics. Oxford University Press, London

    Google Scholar 

  2. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics. Oxford University Press, Oxford, NY

    Google Scholar 

  3. Orlik M (1996) Oscillating reactions—order and chaos. WNT, Warsaw (in Polish)

    Google Scholar 

  4. Kawczyński AL (1990) Chemical reactions—from equilibrium, through dissipative structures to chaos. WNT, Warsaw (in Polish)

    Google Scholar 

  5. Williams R (1963) J Chem Phys 39:384

    Article  CAS  Google Scholar 

  6. Schaper H, Köstlin H, Schnedler E (1982) J Electrochem Soc 129:1289

    Article  CAS  Google Scholar 

  7. Orlik M, Rosenmund J, Doblhofer K, Ertl G (1998) J Phys Chem B 102:1397

    Article  CAS  Google Scholar 

  8. Orlik M, Doblhofer K, Ertl G (1998) J Phys Chem B 102:6367

    Article  CAS  Google Scholar 

  9. Orlik M (1999) J Phys Chem B 105:6629

    Article  Google Scholar 

  10. Orlik M (1999) PCCP 1:5359

    CAS  Google Scholar 

  11. Orlik M (2000) Electrochem Commun 2:522

    Article  CAS  Google Scholar 

  12. Orbán M (1986) J Am Chem Soc 108:6893

    Article  Google Scholar 

  13. Pękala K, Jurczakowski R, Lewera A, Orlik M (2007) J Phys Chem A 111:3439

    Article  Google Scholar 

  14. Jurczakowski R, Orlik M (2003) J Phys Chem B 107:10148

    Article  CAS  Google Scholar 

  15. Jurczakowski R, Orlik M (2002) J Phys Chem B 106:1058

    Article  CAS  Google Scholar 

  16. Jurczakowski R, Orlik M (2005) J Electroanal Chem 574:311

    Article  CAS  Google Scholar 

  17. Schell M (1998) J Electroanal Chem 457:221

    Article  CAS  Google Scholar 

  18. Orbán M, Dateo C, De Kepper P, Epstein IR (1982) J Am Chem Soc 104:5911

    Article  Google Scholar 

  19. Nagy A, Treindl L (1989) J Phys Chem 93:2807

    Article  CAS  Google Scholar 

  20. Chie K, Okazaki N, Tanimoto Y, Hanazaki I (2001) Chem Phys Lett 334:55

    Article  CAS  Google Scholar 

  21. Ray WH, Villa CM (2000) Chem Eng Sci 55:275

    Article  Google Scholar 

  22. Epstein IR, Pojman JA (1999) Chaos 9:255

    Article  CAS  Google Scholar 

  23. Pojman JA, Trang-Cong-Miyata Q (eds) (2002) Nonlinear dynamics in polymeric systems. ACS Symposium Series no. 869. Oxford University Press, New York

    Google Scholar 

  24. Teymour F, Ray WH (1992) Chem Eng Sci 47:4121

    Article  CAS  Google Scholar 

  25. Khan AM, Pojman JA (1996) Trends Polym Sci 4:253

    CAS  Google Scholar 

  26. Yoshida R, Kokufuta E, Yamaguchi T (1999) Chaos 9:260

    Article  CAS  Google Scholar 

  27. Takeoka Y, Watanabe M, Yoshida R (2003) J Am Chem Soc 125:13320

    Article  CAS  Google Scholar 

  28. Hegedüs L, Kirschner N, Wittmann M, Simon P, Noszticzius Z, Amemiya T, Ohmori T, Yamaguchi T (1999) Chaos 9:283

    Article  Google Scholar 

  29. Campbell CJ, Smoukov SK, Bishop KJM, Grzybowski BA (2005) Langmuir 21:2637

    Article  CAS  Google Scholar 

  30. Bishop KJM, Fiałkowski M, Grzybowski BA (2005) J Am Chem Soc 127:15943

    Article  CAS  Google Scholar 

  31. Bensemann IT, Fiałkowski M, Grzybowski BA (2005) J Phys Chem B 109:2774

    Article  CAS  Google Scholar 

  32. Ishikawa M (2005) Chaos 15:047503

    Article  Google Scholar 

  33. Bohannan EW, Huang LY, Scott Miller F, Shumsky MG, Switzer JA (1999) Langmuir 15:813

    Article  CAS  Google Scholar 

  34. Switzer JA, Hung CJ, Huang LY, Miller FS, Zhou Y, Raub ER, Shumsky MG, Bohannan EW (1998) J Mater Res 13:909

    Article  CAS  Google Scholar 

  35. Huang LY, Bohannan EW, Hung CJ, Switzer JA (1997) Isr J Chem 37:297

    CAS  Google Scholar 

  36. Wu Z, Bao YJ, Yu GW, Wang M, Peng RW, Fleury V, Hao XP, Ming NB (2006) J Phys Condens Matter 18:5425

    Article  CAS  Google Scholar 

  37. Ha MJ, Fang F, Liu JM, Wang M (2005) Eur Phys J D 34:195

    Article  CAS  Google Scholar 

  38. Najanishi S, Sakai S, Nishimura K, Nakato Y (2005) J Phys Chem B 109:18846

    Article  Google Scholar 

  39. Liu T, Wang S, Wang M, Peng RW, Ma GB, Hao XP, Ming NB (2006) Surf Interface Anal 38:1019

    Article  CAS  Google Scholar 

  40. Wang S, Zhang KQ, Xu QY, Wang M, Peng RW, Zhang Z, Ming NB (2003) J Phys Soc Jpn 72:1574

    Article  CAS  Google Scholar 

  41. Fukami K, Nakanishi S, Tada T, Yamasaki H, Sakai S, Fukushima S, Nakato Y (2005) J Electrochem Soc 152:C493

    Article  CAS  Google Scholar 

  42. Sakai S, Nakanishi S, Nakato Y (2006) J Phys Chem B 110:11944

    Article  CAS  Google Scholar 

  43. Sakai S, Nakanishi S, Fukami K, Nakato Y (2002) Chem Lett 6:640

    Article  Google Scholar 

  44. Nakanishi S, Sakai S, Nagai T, Nakato Y (2005) J Phys Chem B 100:1750

    Article  Google Scholar 

  45. Nagai T, Nakanishi S, Mukouyama Y, Ogata YH, Nakato Y (2006) Chaos 16:037106

    Article  Google Scholar 

  46. Nakato Y, Murakoshi K, Imanishi A, Morisawa K (2000) Electrochemistry 68:556

    CAS  Google Scholar 

  47. Tiginyanu IM, Ursaki VV, Monaico E, Foca E, Föll H (2007) Electrochem Solid State Lett 10:D127

    Article  CAS  Google Scholar 

  48. Claussen JC, Carstensen J, Christophersen M, Langa S, Föll H (2003) Chaos 13:217

    Article  CAS  Google Scholar 

  49. Föll H (1991) Appl Phys A Solids Surf 53:8

    Article  Google Scholar 

  50. Smith RL, Collins SD (1992) J Appl Phys 71:R1

    Article  CAS  Google Scholar 

  51. Carstensen J, Christophersen M, Föll H (2000) Mater Sci Eng B 69–70:23

    Article  Google Scholar 

  52. Carstensen J, Prange R, Popkirov GS, Föll H (1998) Appl Phys A Mater Sci Process 67:459

    Article  CAS  Google Scholar 

  53. Carstensen J, Prange R, Föll H (1999) J Electrochem Soc 146:1134

    Article  CAS  Google Scholar 

  54. Ott E, Grebogi C, Yorke JA (1990) Phys Rev Lett 64:1196

    Article  Google Scholar 

  55. Pyragas K (1992) Phys Rev Lett A 170:421

    Google Scholar 

  56. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Föll H (2003) Appl Phys Lett 82:278

    Article  CAS  Google Scholar 

  57. Cheng F, Carstensen J, Föll H (2006) Mater Sci Semicond Process 9:694

    Article  CAS  Google Scholar 

  58. Fang C, Föll H, Carstensen J (2006) J Electroanal Chem 589:259

    Article  CAS  Google Scholar 

  59. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Science 289:98

    Article  CAS  Google Scholar 

  60. Ertl G (2002) Faraday Discuss 121:1

    Article  CAS  Google Scholar 

  61. Imbihl R (1993) Prog Surf Sci 44:185

    Article  CAS  Google Scholar 

  62. Strasser P, Lübke M, Raspel F, Eiswirth M, Ertl G (1997) J Chem Phys 107:979

    Article  CAS  Google Scholar 

  63. Ertl G (1997) Appl Surf Sci 121:20

    Article  Google Scholar 

  64. Bertram M, Beta C, Rotermund HH, Ertl G (2003) J Phys Chem B 107:9610

    Article  CAS  Google Scholar 

  65. Bertram M, Beta C, Pollmann M, Mikhailov AS, Rotermund HH, Ertl G (2003) Phys Rev E 67:036208

    Article  Google Scholar 

  66. Kim M, Bertram M, Pollmann M, von Oertzen A, Mikhailov AS, Rotermund HH, Ertl G (2001) Science 292:1357

    Article  CAS  Google Scholar 

  67. Flätgen G, Krischer K (1995) J Chem Phys 103:5428

    Article  Google Scholar 

  68. Flätgen G, Krischer K (1995) Phys Rev 51:3997

    Google Scholar 

  69. Mazouz N, Krischer K (2000) J Phys Chem B 104:6081

    Article  CAS  Google Scholar 

  70. Krischer K (2001) J Electroanal Chem 501:1

    Article  CAS  Google Scholar 

  71. Krischer K, Mazouz N, Flätgen G (2000) J Phys Chem B 104:7545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Orlik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlik, M. Self-organization in nonlinear dynamical systems and its relation to the materials science. J Solid State Electrochem 13, 245–261 (2009). https://doi.org/10.1007/s10008-008-0554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0554-y

Keywords

Navigation