Skip to main content
Log in

A facile electrochemical synthesis of covellite nanomaterials at room temperature

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel method for the electrochemical synthesis of covellite (CuS) nanoparticles (NPs) in aqueous phase was developed. In this experiment, thioglycerol (TG) is used as the catalyst for the hydrolysis of sodium thiosulfate, the sulfur source for the synthesis of CuS. Cu foil, which acts as the sacrificing anode, is oxidized to Cu2+ by applying a potential of 0.5 V while OH- was produced on the cathode surface at the same time. The production of OH- facilitates the reaction between Cu2+ and thiosulfate under the catalysis of TG. The evolution of hydrogen bubbles effectively prevents the deposition of copper sulfide on the cathode. Copper sulfide sols of “golden-brown”, and “dark-green” forms can be obtained by varying the concentration of TG. The “golden-brown” copper sulfide sols are also observed to convert to the green form with time, and the rate of this conversion process is faster at higher temperatures. X-ray diffraction (XRD) and chemical analysis indicate that the “dark-green” form of product is pure hexagonal phase CuS. The obtained CuS NPs were covered by a layer of TG as suggested by Fourier transform infrared (FTIR) data. The size and morphology of the particles are studied by transmission electron microscope (TEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang YH, Chen F, Zhuang JH, Tang Y, Wang DJ, Wang YJ, Dong AG, Ren N (2002) Chem Commun 23:2814

    Article  Google Scholar 

  2. Guo DJ, Li HL (2004) Electrochem Commun 6:999

    Article  CAS  Google Scholar 

  3. Mazur M (2004) Electrochem Commun 6:400

    Article  CAS  Google Scholar 

  4. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401

    Article  CAS  Google Scholar 

  5. Rodrigues-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) J Phys Chem B 104:9683

    Google Scholar 

  6. Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661

    Article  CAS  Google Scholar 

  7. Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) J Phys Chem B 102:9370

    Article  CAS  Google Scholar 

  8. Liu YC, Li HL (2004) Electrochem Commun 6:1163

    Article  CAS  Google Scholar 

  9. Reisse J, Francois H, Vandercammen J, Fabre O, Mesmaeker AKD, Maerschalk C, Delplancke JL (1994) Electrochim. Acta 39:37

    Article  CAS  Google Scholar 

  10. Delplancke JL, Dille J, Reisse J, Long GJ, Mohan A, Grandjean F (2000) Chem Mater 12:946

    Article  CAS  Google Scholar 

  11. Shen LM, Yao JL, Gu RA (2007) Acta Chimica Sinica 65:203

    CAS  Google Scholar 

  12. Ma HY, Yin BS, Wang SY, Jiao YL, Pan W, Huang SX, Chen SH, Meng FJ (2004) Chem Phys Chem 5:68

    CAS  Google Scholar 

  13. Yin BS, Ma HY, Wang SY, Chen SH (2003) J Phys Chem B 107:8898

    Article  CAS  Google Scholar 

  14. Huang CJ, Chiu PH, Wang YH, Chen KL, Linn JJ, Yang CF (2006) J Electrochem Soc 153:D193

    Article  CAS  Google Scholar 

  15. Franger S, Berthet P, Berthon J (2004) J Solid State Eletrochem 8:218

    Article  CAS  Google Scholar 

  16. Yang YJ, He LY, Zhang QF (2005) Electrochem Comm 7:361

    Article  CAS  Google Scholar 

  17. Grozdanov I, Najdoski M (1995) J Solid State Chem 14:469

    Article  Google Scholar 

  18. Nascu C, Pop I, Ionescu V, Indrea E, Bratu I (1997) Mater Lett 32:73

    Article  CAS  Google Scholar 

  19. Hermann AM, Fabick L (1983) J Cryst Growth 61:658

    Article  CAS  Google Scholar 

  20. Wang M, Sun L, Fu X, Liao C, Yan C (2000) Solid State Commun 115:493

    Article  CAS  Google Scholar 

  21. Hu J, Deng B, Zhang W, Tang K, Qian Y (2001) Int J Inorg Mater 3:639

    Article  CAS  Google Scholar 

  22. Takase K, Koyano M, Shimizu T, Makihara K, Takahashi Y, Takano Y, Sekizawa K (2002) Solid State Commun 123:531

    Article  CAS  Google Scholar 

  23. Qiao Z, Xie Y, Xu J, Zhu Y, Qian Y (1999) J Colloid Interface Sci 214:459

    Article  CAS  Google Scholar 

  24. Zhang Y, Qiao Z, Chen X (2002) J Solid State Chem 167:249

    Article  CAS  Google Scholar 

  25. Wang H, Zhang J, Zhao X, Xu S, Zhu J (2002) Mater Lett 55:253

    Article  CAS  Google Scholar 

  26. Lu J, Zhao Y, Chen N, Xie Y (2003) Chem Lett 32:30

    Article  CAS  Google Scholar 

  27. Wang C, Tang K, Yang Q, Bin H, Shen G, Qian Y (2001) Chem Lett 494

  28. Zhang P, Gao L (2003) J Mater Chem 13:2007

    Article  CAS  Google Scholar 

  29. Wu CY, Yu SH, Chen SF, Liu GN, Liu BH (2006) J Mater Chem 16:3326

    Article  CAS  Google Scholar 

  30. Qin AM, Fang YP, Ou HD, Liu HQ, Su CY (2005) Cryst Growth Design 5:855

    Article  CAS  Google Scholar 

  31. Zhang HT, Wu G, Chen XH (2006) Mater Chem Phys 98:298

    Article  CAS  Google Scholar 

  32. Ji HM, Cao JM, Feng J, Chang X, Ma XJ, Liu JS, Zheng MB (2005) Mater Lett 59:3169

    Article  CAS  Google Scholar 

  33. Tan CH, Zhu YL, Lu R, Xue PC, Bao CY, Liu XL, Fei ZP, Zhao YY (2005) Mater Chem Phys 91:44

    Article  CAS  Google Scholar 

  34. Ni YH, Wang F, Liu HJ, Liang YY, Yin G, Hong JM, Ma X, Xu Z (2003) Inorg Chem Comm 6:1406

    Article  CAS  Google Scholar 

  35. Yang YJ, Xiang JW (2005) Appl Phys A 81:1351

    Article  CAS  Google Scholar 

  36. Ewen JS, Franz G, Brett AS, Thomas WH (1991) Langmuir 7:2917

    Article  Google Scholar 

  37. Zhang P, Gao L (2003) J Mater Chem 13:2007

    Article  CAS  Google Scholar 

  38. Dixit SG, Mahadeshwar AR, Haram SK (1998) Coll Surf A 133:69

    Article  CAS  Google Scholar 

  39. Haram SK, Mahadeshwar AR, Dixit SG (1996) J Phys Chem 100:5868

    Article  CAS  Google Scholar 

  40. Chen SW, Templeton AC, Murray RW (2000) Langmuir 16:3543

    Article  CAS  Google Scholar 

  41. Chen SW, Murray RW. J Phys Chem B 103:9996

Download references

Acknowledgment

Financial support from the National Nature Science Foundation of China (Nos. 30370397 and 60571042) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengshui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.J., Hu, S. A facile electrochemical synthesis of covellite nanomaterials at room temperature. J Solid State Electrochem 12, 1405–1410 (2008). https://doi.org/10.1007/s10008-007-0481-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0481-3

Keywords

Navigation