Skip to main content
Log in

AFM study of morphological changes associated with electrochemical solid–solid transformation of three-dimensional crystals of TCNQ to metal derivatives (metal = Cu, Co, Ni; TCNQ = tetracyanoquinodimethane)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acker DS et al (1960) J Am Chem Soc 82:6408–6409

    Article  CAS  Google Scholar 

  2. Krysinski P, Tien HT (1988) Bioelectrochem and Bioenerg 19:227–233

    Article  CAS  Google Scholar 

  3. Freund MS, Brajtertoth A, Ward MD (1990) J Electroanal Chem 289:127–141

    Article  CAS  Google Scholar 

  4. Nakajima K, Kageshima M, Ara N, Yoshimura M, Kawazu A (1993) Appl Phys Lett 62:1892–1894

    Article  CAS  Google Scholar 

  5. Bond AM, Fletcher S, Marken F, Shaw SJ, Symons PG (1996) J Chem Soc-Faraday Trans 92:3925–3933

    Article  CAS  Google Scholar 

  6. Chambers JQ, Scaboo K, Evans CD (1996) J Electrochem Soc 143:3039–3045

    Article  CAS  Google Scholar 

  7. Bartlett PN, Tong XQ (1997) J Phys Chem B 101:8540–8549

    Article  CAS  Google Scholar 

  8. Bond AM, Fiedler DA (1997) J Electrochem Soc 144:1566–1574

    Article  CAS  Google Scholar 

  9. Bond AM, Fletcher S, Symons PG (1998) Analyst 123:1891–1904

    Article  CAS  Google Scholar 

  10. Oyama M et al (1998) J Phys Chem B 102:6588–6595

    Article  CAS  Google Scholar 

  11. Bellec V et al (2001) Electrochem Comm 3:483–488

    Article  CAS  Google Scholar 

  12. Fraxedas J, Langer J, Diez I, Sanz F (2006) J Low Temp Phys 142:121–126

    Article  CAS  Google Scholar 

  13. Gomez L, Rodriguez-Amaro R (2006) Langmuir 22:7431–7436

    Article  CAS  Google Scholar 

  14. Liu YL et al (2006) J Am Chem Soc 128:12917–12922

    Article  CAS  Google Scholar 

  15. O’Mullane AP, Neufeld AK, Bond AM (2005) Anal Chem 77:5447–5452

    Article  CAS  Google Scholar 

  16. Neufeld AK, O’Mullane AP, Bond AM (2005) J Am Chem Soc 127:13846–13853

    Article  CAS  Google Scholar 

  17. Harris AR, Neufeld AK, O’Mullane AP, Bond AM, Morrison RJS (2005) J Electrochem Soc 152:C577–C583

    Article  CAS  Google Scholar 

  18. Cao GY et al (2005) Micron 36:267–270

    Article  CAS  Google Scholar 

  19. Zhang Q, Kong LZ, Zhang QJ, Wang WJ, Hua ZY (2004) Solid State Commun 130:799–802

    Article  CAS  Google Scholar 

  20. Liu SG, Liu YQ, Wu PJ, Zhu DB (1996) Chem Mater 8:2779–2787

    Article  CAS  Google Scholar 

  21. Heintz RA et al (1999) Inorg Chem 38:144–156

    Article  CAS  Google Scholar 

  22. Liu YL et al (2005) Adv Mater 17:2953–2957

    Article  CAS  Google Scholar 

  23. Potember RS, Poehler TO, Cowan DO, Bloch AN (1981) Bull Amer Phys Soc 26:309

    Google Scholar 

  24. Neufeld AK, Madsen I, Bond AM, Hogan CF (2003) Chem Mater 15:3573–3585

    Article  CAS  Google Scholar 

  25. Nafady A, O’Mullane AP, Bond AM, Neufeld AK (2006) Chem Mater 18:4375–4384

    Article  CAS  Google Scholar 

  26. Hoagland JJ, Wang XD, Hipps KW (1993) Chem Mater 5:54–60

    Article  CAS  Google Scholar 

  27. Wan LJ, Itaya K (2001) Chin Sci Bull 46:377–380

    Article  CAS  Google Scholar 

  28. Magonov SN, Bar G, Cantow HJ, Ren J, Whangbo MH (1994) Synth Met 62:159–167

    Article  CAS  Google Scholar 

  29. Higo M, Lu X, Mazur U, Hipps KW (2001) Thin Solid Films 384:90–101

    Article  CAS  Google Scholar 

  30. Suarez MF, Bond AM, Compton RG (1999) J Solid State Electrochem 4:24–33

    Article  CAS  Google Scholar 

  31. Bond AM (2002) Broadening electrochemical horizons: principles and illustration of voltammetric and related techniques, Chapter 5. Oxford University Press, Oxford

    Google Scholar 

  32. Nafady A, Bond AM (2007) Inorg Chem 46:4128–4137

    Article  CAS  Google Scholar 

  33. Bak E, Donten M, Stojek Z, Scholz F (2007) Electrochem Comm 9:386–392

    Article  CAS  Google Scholar 

  34. Deng Y et al (2005) J Phys Chem B 109:14043–14051

    Article  CAS  Google Scholar 

  35. Hasse U, Scholz F (2001) Electrochem Comm 3:429–434

    Article  CAS  Google Scholar 

  36. Hermes M, Scholz F (2000) Electrochem Comm 2:845–850

    Article  CAS  Google Scholar 

  37. Suchanski MR, Vanduyne RP (1976) J Am Chem Soc 98:250–252

    Article  CAS  Google Scholar 

  38. Hu ZP et al (1995) J Mol Struct 356:163–168

    Article  CAS  Google Scholar 

  39. Makowski M, Pawlikowski MT (2006) Int J Quantum Chem 106:1736–1748

    Article  CAS  Google Scholar 

  40. Gucciardi PG, Trusso S, Vasi C, Patane S, Allegrini M (2002) Phys Chem Chem Phys 4:2747–2753

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The Australian Research Council is gratefully acknowledged for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Bond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, X., Nafady, A., Mechler, A. et al. AFM study of morphological changes associated with electrochemical solid–solid transformation of three-dimensional crystals of TCNQ to metal derivatives (metal = Cu, Co, Ni; TCNQ = tetracyanoquinodimethane). J Solid State Electrochem 12, 739–746 (2008). https://doi.org/10.1007/s10008-007-0423-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0423-0

Keywords

Navigation