Skip to main content
Log in

Electrochemical studies on the corrosion of brass in seawater under anaerobic conditions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports an electrochemical study on the corrosion of brass in deoxygenated nonbuffered and buffered natural and artificial seawater solutions under anaerobic conditions. Cyclic voltammograms of brass and copper in natural seawater (NSW) and artificial seawater (ASW) were obtained in the passive and transpassive potential regions. The corrosion resistance of brass in natural and artificial seawater was evaluated, and open-circuit potentials were recorded over exposure period of 1 week. Brass samples from 3-month exposures in deoxygenated nonbuffered ASW and NSW, under open-circuit potential, have been imaged by scanning electron microscopy, and the elemental composition of the corrosion products was obtained by energy dispersive spectrometry analysis. It has been concluded that, under anaerobic conditions, the aggressivity of NSW is higher, with brass being less resistant to corrosion than copper, and that buffer contributes to reduce the aggressivity of both media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Quartanone MA, Moretti G, Bellani T (1998) Corrosion 54:606

    Google Scholar 

  2. Elmorsi MA, El-Sheikh MY, Bastweesy AM, Ghoneim MM (1991) Bull Electrochem 71:58

    Google Scholar 

  3. Sugawara H, Ebiko H (1967) Corros Sci 7:513

    Article  CAS  Google Scholar 

  4. Dinnappa R, Mayanna SM (1987) Corros Sci 27:349

    Article  CAS  Google Scholar 

  5. Polunin AV, Pchelnikov AP, Losev VV, Marshakov IK (1982) Electrochim Acta 27:467

    Article  CAS  Google Scholar 

  6. Chialvo MR, Salvarezza RC, Vasquez Moll D, Arvia A (1985) Electrochim Acta 30:1501

    Article  Google Scholar 

  7. Gad-Allah AG, Abou-Ronia MM, Badway MW, Reha HH (1991) J Appl Electrochem 21:829

    Article  CAS  Google Scholar 

  8. Morales J, Fernandez GT, Esparza P, Gonzalez S, Salvarezza RC, Arvia AJ (1995) Corros Sci 37:211

    Article  CAS  Google Scholar 

  9. Morales J, Fernandez GT, Gonzalez S, Esparza P, Salvarezza RC, Arvia AJ (1998) Corros Sci 40:177

    Article  CAS  Google Scholar 

  10. Biton MG, Aurbach D, Mishkov P, Ilzycer D (2006) J Electrochem Soc 153:B555

    Article  CAS  Google Scholar 

  11. Kabasakaloglu M, Kryak T, Sendil O, Asan A (2002) Appl Surf Sci 193:167

    Article  CAS  Google Scholar 

  12. El-Sherif RM, Ismail KM, Badawy WA (2004) Electrochim Acta 49:5139

    Article  CAS  Google Scholar 

  13. Rudd A, Breslin CB (2000) Electrochim Acta 45:4015

    Article  CAS  Google Scholar 

  14. Badawy WA, El-Egamy SS, El-Azab SS (1995) Corros Sci 37:1969

    Article  CAS  Google Scholar 

  15. Rylkina MV, Kuznetsov Yu I, Kalashnikova MV, Eremina MA (2002) Prot Met 38:340

    Article  CAS  Google Scholar 

  16. Kosec T, Milošev MI, Pihlar B (2005) J Appl Electrochem 35:975

    Article  CAS  Google Scholar 

  17. Milošev I, Mikić KT, Gaberšček M (2006) Electrochim Acta 5:415

    Article  CAS  Google Scholar 

  18. Milošev I, Strehblow H-H (2003) J Electrochem Soc 150:B517

    Article  CAS  Google Scholar 

  19. Morales J, Esparza P, Fernandez GT, Gonzalez S, Gracia JE, Caceres J, Salvarezza RC, Arvia AJ (1995) Corros Sci 37:231

    Article  CAS  Google Scholar 

  20. Darou K, Bellakhal N, Cheron BG, Brisset JL (1998) Mater Res Bull 33:1117

    Article  Google Scholar 

  21. Mansfeld F, Little B (1992) Corros Sci 37:1992

    Google Scholar 

  22. Habib K, Riad W, Muhanna K, Al-Sumait H (2002) Desalination 142:5

    Article  CAS  Google Scholar 

  23. Ravichandra R, Rajendran N (2005) Appl Surf Sci 241:449

    Article  CAS  Google Scholar 

  24. Santos CIS (2005) Corrosion of brass. Master thesis, University of Lisboa, Lisboa

  25. Santos CIS, Mendonça MH, Fonseca ITE (2006) J Appl Electrochem 36:1311

    Article  CAS  Google Scholar 

  26. Hostis L, Gagbert C, Féron D (2003) Electrochim Acta 48:1451

    Article  CAS  Google Scholar 

  27. Ferreira JP, Rodrigues JA, Fonseca ITE (2004) J Solid State Electrochem 8:260

    Article  CAS  Google Scholar 

  28. Sinapi F, Deroubaix S, Pirlot C, Delhalle J, Mekhalif Z (2004) Electrochim Acta 49:2987

    Article  CAS  Google Scholar 

  29. Sinapi F, Forget L, Delhalle J, Mekhalif Z (2002) Surf Interface Anal 34:148

    Article  CAS  Google Scholar 

  30. Mountassir Z, Srhiri A (2007) Corros Sci 49:1350

    Article  CAS  Google Scholar 

  31. Rand MC, Arnold WFC, Greenberg EG, Taras MJ (1975) Standards methods for the examination of water and wastewater, 4th edn. American Public Health Association. Washington, DC

    Google Scholar 

  32. Mansfeld F, Hsu CH, Sun Z, Örnek D, Wood TK (2002) Corrosion 58:187

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Portuguese Foundation for Science and Technology (FCT) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. E. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastos, M.C., Proença, L.F.A., Neto, M.M.M. et al. Electrochemical studies on the corrosion of brass in seawater under anaerobic conditions. J Solid State Electrochem 12, 121–131 (2008). https://doi.org/10.1007/s10008-007-0369-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0369-2

Keywords

Navigation