Skip to main content
Log in

A comparative spectroelectrochemical study of the redox electrochemistry of nitroanilines

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxidative and reductive electrochemistry of the three isomeric nitroanilines has been studied in neutral (0.1 mol L−1 KClO4) and acidic (0.1 mol L−1 HClO4) aqueous electrolyte solutions by cyclic voltammetry and surface enhanced Raman spectroscopy (SERS). The cyclic voltammograms recorded for o- and p-nitroanilines with a gold electrode in acidic solution, scanning toward negative potentials, revealed formation of phenylenediamine not observed in neutral solution. Similar behavior of nitroanilines and phenylenediamines was observed on gold and platinum electrodes. An oxygen–gold adsorbate stretching mode was detected between 400 and 430 cm−1 in the SER-spectra of the three isomeric nitroanilines in both electrolyte solutions at positive electrode potentials, implying perpendicular adsorption via the nitro group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nobutoki H, Koezuka H (1997) J Phys Chem 101:3762

    CAS  Google Scholar 

  2. Bertinelli F, Palmieri P, Brillante A, Taliani C (1977) Chem Phys 25:333

    Article  CAS  Google Scholar 

  3. Stähelin M, Burland DM, Rice JE (1992) Chem Phys Lett 191:245

    Article  Google Scholar 

  4. Woodford JN, Pauley MA, Wang CH (1997) J Phys Chem A 101:1989

    Article  CAS  Google Scholar 

  5. Huyskens FL, Huyskens PL, Persoons AP (1998) J Chem Phys 108:8161

    Article  CAS  Google Scholar 

  6. Turi L, Dannenberg JJ (1996) J Phys Chem 100:9638

    Article  CAS  Google Scholar 

  7. Szostak MM, Kozankiewicz B, Wojcik G, Lipinski J (1998) J Chem Soc Faraday Trans 94:3241

    Article  Google Scholar 

  8. Hurst M, Munn RW (1989) Special publication, Royal Society of Chemistry (Org Mater non-linear Opt) 69:3

  9. Hutter J, Wagniere G (1988) J Mol Struct 175:159

    Article  CAS  Google Scholar 

  10. Dannenberg JJ (1991) ACS Symp Ser (Mater Nonlinear Opt) 455:457

  11. Wesch A, Dannenberger O, Wöll C, Wolff JJ, Buck M (1996) Langmuir 12:5330

    Article  CAS  Google Scholar 

  12. Schmid ED, Moschallski M, Peticolas WL (1986) J Phys Chem 90:2340

    Article  CAS  Google Scholar 

  13. Kumar K, Carey PR (1975) J Phys Chem 63:3697

    Article  CAS  Google Scholar 

  14. Schmidt PH, Plieth WJ (1986) J Electroanal Chem 201:163

    Article  CAS  Google Scholar 

  15. Holze R, Surface and interface analysis: an electrochemists toolbox, Springer, Berlin Heidelberg New York, in preparation

  16. Holze R (1991) Electrochim Acta 36:1523

    Article  CAS  Google Scholar 

  17. Gao P, Weaver MJ (1985) J Phys Chem 89:5040

    Article  CAS  Google Scholar 

  18. Li YS, Lin X, Cao YH (1999) Vib Spectrosc 20:95

    Article  CAS  Google Scholar 

  19. Li Y-S, Vo-Dinh T, Stokes DL, Wang Y (1992) Appl Spectrosc 46:1354

    Article  CAS  Google Scholar 

  20. Hu J, Zhao B, Xu W, Fan Y, Li B, Ozaki Y (2002) J Phys Chem B 106:6500

    Article  CAS  Google Scholar 

  21. Hu J, Zhao B, Xu W, Fan Y, Li B, Ozaki Y (2002) Langmuir 18:6839

    Article  CAS  Google Scholar 

  22. Roth I, Jbarah AA, Spange S, Holze R, work in progress

  23. Astle MJ, McConnell WV (1943) J Am Chem Soc 65:35

    Article  CAS  Google Scholar 

  24. Ravichandran C, Vasudevan D, Anantharaman PN (1992) J Appl Electrochem 22:1192

    Article  CAS  Google Scholar 

  25. Jagganathan E, Mohamed M, Ahmed KAB, Anantharaman PN (1988) J Electrochem Soc India 37:65

    CAS  Google Scholar 

  26. Jagannathan E, Chellammal S, Tirunavukkarasu P, Anantharaman PN (1990) Trans SAEST 25:25

    CAS  Google Scholar 

  27. Holze R (1988) Surf Sci 202:L612

    Article  CAS  Google Scholar 

  28. Holze R (1990) Electrochim Acta 35:1037

    Article  CAS  Google Scholar 

  29. Karpiński ZJ, Kublik Z (1986) Pol J Chem 68:269

    Google Scholar 

  30. Testa AC, Reinmuth WH (1961) J Am Chem Soc 83:784

    Article  CAS  Google Scholar 

  31. Stradins J, Kravis I (1975) J Electroanal Chem 65:635

    Article  CAS  Google Scholar 

  32. Bencheikh-Sayarh S, Pouillen P, Martre A-M, Martinet P (1983) Electrochim Acta 28:627

    Article  CAS  Google Scholar 

  33. Bencheikh-Sayarh S, Cheminat B, Mousset G, Pouillen P (1984) Electrochim Acta 29:1225

    Article  CAS  Google Scholar 

  34. Mohammad M, Khan AY, Afzal M, Niza A, Ahmed R (1974) Aust J Chem 27:2495

    Article  CAS  Google Scholar 

  35. Geske DH, Ragle JI, Bambenek MA, Balch AI (1964) J Am Chem Soc 86:987

    Article  CAS  Google Scholar 

  36. Allendoerfer RD, Rieger PH (1966) J Am Chem Soc 88:3711

    Article  CAS  Google Scholar 

  37. Runner ME (1952) J Am Chem Soc 74:3567

    Article  CAS  Google Scholar 

  38. Shreve OD, Markham EC (1949) J Am Chem Soc 71:2993

    Article  CAS  Google Scholar 

  39. Parkash R, Kalla RK, Verma RS (1976) Proc Indian Acad Sci 84A:64

    Google Scholar 

  40. Carastoian AI, Banica FG, Moraru M (1993 ) Rev Roum Chim 38:287; Carastoian AI, Banica FG, Moraru M (1993 ) 38:615

  41. Tomat R (1970) Chimica e L’Industria 52:438

    Google Scholar 

  42. Ana MAS, Chadwick I, Gonzalez G (1982) Bol Soc Chil Quim 27:244

    Google Scholar 

  43. Ana MAS, Chadwick I, Gonzalez G (1985) J Chem Soc Perkin Trans II 1755

  44. Wawzonek S, Mclntire TW (1967) J Electrochem Soc 114:1025

    Article  CAS  Google Scholar 

  45. Shenglong W, Fosong W, Xiaohui G (1986) Synth Met 16:99

    Article  Google Scholar 

  46. Heineman WR, Wieck HJ, Yacynych AM (1980) Anal Chem 52:345

    Article  CAS  Google Scholar 

  47. Malitesta C, Palmizano F, Torsi L, Zambonin PG (1990) Anal Chem 62:2735

    Article  PubMed  CAS  Google Scholar 

  48. Ye B-X, Zhang W-M, Zhou X-Y (1997) Chin J Chem 15:343

    Article  CAS  Google Scholar 

  49. Xu J, Sun X, Liu B, Xu F (2001) Anal Sci 17:i1363

    Article  Google Scholar 

  50. Piette LH, Ludwig P, Adams RN (1962) Anal Chem 34:916

    Article  CAS  Google Scholar 

  51. Kitani A, So Y-H, Miller LL (1981) J Am Chem Soc 103:7636

    Article  CAS  Google Scholar 

  52. Kitani A, Miller LL (1981) J Am Chem Soc 103:3595

    Article  CAS  Google Scholar 

  53. Ravichandran K, Baldwin RP (1983) Anal Chem 55:1586

    Article  CAS  Google Scholar 

  54. Duca A, Bejan D (1991) Rev Roum Chim 36:439

    CAS  Google Scholar 

  55. Stočesová D (1949) Collect Czech Chem Commun 14:615

    Google Scholar 

  56. Yang L, Guang-Zhi X, Jing-Gui S, Jin-Liang G, You-Qi T (1989) Acta Chim Sin (Eng Ed) 4:365

    Google Scholar 

  57. Genies EM, Lapkowski M (1987) J Electroanal Chem 236:189

    Article  CAS  Google Scholar 

  58. Bacon J, Adams RN (1968) J Am Chem Soc 90:6596

    Article  CAS  Google Scholar 

  59. Roy BC, Gupta MD, Ray JK (1995) Macromolecules 28:1727

    Article  CAS  Google Scholar 

  60. Koval’chuk EP, Whittingham S, Skolozdra OM, Zavalij PY, Zavaliy IY, Reshetnyak OV, Seledets M (2001) Mater Chem Phys 69:154; Koval’chuk EP, Whittingham S, Skolozdra OM, Zavalij PY, Zavaliy IY, Reshetnyak OV, Blazejowski J (2001) Mater Chem Phys 70:38

    Article  Google Scholar 

  61. Varsányi G (1974) Assignments for vibrational spectra of seven hundred benzene derivatives. Adam Hilger, London

  62. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. Wiley, New York

  63. Muniz-Miranda M (1997) J Raman Spectrosc 28:205

    Article  CAS  Google Scholar 

  64. Gao X, Davies JP, Weaver MJ (1990) J Phys Chem 94:6858

    Article  CAS  Google Scholar 

  65. Tanaka T, Nakajima A, Watanabe A, Ohno T, Ozaki Y (2003) J Mol Struct 661/662:437

    Google Scholar 

  66. Holze R (1987) Electrochim Acta 32:1527

    Article  CAS  Google Scholar 

  67. Holze R (1988) J Electroanal Chem 250:143

    Article  CAS  Google Scholar 

  68. Vaschetto ME, Retamal BA, Monkman AP (1999) J Mol Struct 468:209

    CAS  Google Scholar 

  69. Szostak MM (1979) J Raman Spectrosc 8:43

    Article  CAS  Google Scholar 

  70. Boggetti H, Anunziata JD, Cattana R, Silber JJ (1994) Spectrochim Acta, 50A:719

Download references

Acknowledgment

Financial support from the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jbarah, A.A., Holze, R. A comparative spectroelectrochemical study of the redox electrochemistry of nitroanilines. J Solid State Electrochem 10, 360–372 (2006). https://doi.org/10.1007/s10008-005-0686-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0686-2

Keywords

Navigation